IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v4y2019i2p66-d229344.html
   My bibliography  Save this article

Agro-Climatic Data by County: A Spatially and Temporally Consistent U.S. Dataset for Agricultural Yields, Weather and Soils

Author

Listed:
  • Seong Do Yun

    (Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA)

  • Benjamin M. Gramig

    (Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

Abstract

Agro-climatic data by county (ACDC) is designed to provide the major agro-climatic variables from publicly available spatial data sources to diverse end-users. ACDC provides USDA NASS annual (1981–2015) crop yields for corn, soybeans, upland cotton and winter wheat by county. Customizable growing degree days for 1 °C intervals between −60 °C and +60 °C, and total precipitation for two different crop growing seasons from the PRISM weather data are included. Soil characteristic data from USDA-NRCS gSSURGO are also provided for each county in the 48 contiguous US states. All weather and soil data are processed to include only data for land being used for non-forestry agricultural uses based on the USGS NLCD land cover/land use data. This paper explains the numerical and geo-computational methods and data generating processes employed to create ACDC from the original data sources. Essential considerations for data management and use are discussed, including the use of the agricultural mask, spatial aggregation and disaggregation, and the computational requirements for working with the raw data sources.

Suggested Citation

  • Seong Do Yun & Benjamin M. Gramig, 2019. "Agro-Climatic Data by County: A Spatially and Temporally Consistent U.S. Dataset for Agricultural Yields, Weather and Soils," Data, MDPI, vol. 4(2), pages 1-20, May.
  • Handle: RePEc:gam:jdataj:v:4:y:2019:i:2:p:66-:d:229344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/4/2/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/4/2/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    2. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Michael J. Roberts & Wolfram Schlenker & Jonathan Eyer, 2013. "Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 236-243.
    5. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    6. Baylis, Katherine R. & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-14, August.
    7. Mccarl, Bruce A. & Thayer, Anastasia W. & Jones, Jason P. H., 2016. "The Challenge Of Climate Change Adaptation For Agriculture: An Economically Oriented Review," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 48(4), pages 321-344, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Yunsun & Yun, Seong & Interis, Matthew G., 2023. "Valuation of Crop Diversity Benefits on Water Quality," 2023 Annual Meeting, July 23-25, Washington D.C. 335714, Agricultural and Applied Economics Association.
    2. Hrozencik, R. Aaron & Perez-Quesada, Gabriela & Bocinsky, Kyle, 2024. "The Stocking Impact and Financial-Climate Risk of the Livestock Forage Disaster Program," Economic Research Report 340568, United States Department of Agriculture, Economic Research Service.
    3. Hrozencik, Robert A. & Perez-Quesada, Gabriela, 2023. "Drought and the U.S. Livestock Sector: Assessing the Impact of the Livestock Forage Program," 2023 Annual Meeting, July 23-25, Washington D.C. 335468, Agricultural and Applied Economics Association.
    4. Chen, Bowen & Gramig, Ben & Yun, Seong Do, 2020. "A Causal Analysis of the Effect of Conservation Tillage on U.S. Corn and Soybean Yield and Profitability," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304296, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Seong Do & Gramig, Benjamin M & Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Does Spatial Correlation Matter in Econometric Models of Crop Yield Response and Weather?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205465, Agricultural and Applied Economics Association.
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    4. Zhang, Hongliang & Mu, Jianhong E. & McCarl, Bruce A., 2018. "Adaptation to climate change via adjustment in land leasing: Evidence from dryland wheat farms in the U.S. Pacific Northwest," Land Use Policy, Elsevier, vol. 79(C), pages 424-432.
    5. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    6. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    7. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    8. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    9. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    10. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    11. Huang, Kaixing & Wang, Jinxia & Huang, Jikun & Findlay, Christopher, 2018. "The potential benefits of agricultural adaptation to warming in China in the long run," Environment and Development Economics, Cambridge University Press, vol. 23(2), pages 139-160, April.
    12. Simo Leppänen & Laura Solanko & Riitta Kosonen, 2017. "The Impact of Climate Change on Regional Government Expenditures: Evidence from Russia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 67-92, May.
    13. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    14. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    15. Cattaneo, Cristina & Peri, Giovanni, 2016. "The migration response to increasing temperatures," Journal of Development Economics, Elsevier, vol. 122(C), pages 127-146.
    16. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    17. Leppänen, Simo & Solanko, Laura & Kosonen, Riitta, 2015. "Could climate change affect government expenditures? Early evidence from the Russian regions," BOFIT Discussion Papers 27/2015, Bank of Finland, Institute for Economies in Transition.
    18. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    19. Jean-pascal Bassino & Celine Gimet & Stephane Quefelec, 2018. "Climate and output variability in the Euro-Mediterranean region, 1950-2000," Economics Bulletin, AccessEcon, vol. 38(4), pages 1811-1822.
    20. Hyunok Lee & Daniel Sumner, 2015. "Economics of downscaled climate-induced changes in cropland, with projections to 2050: evidence from Yolo County California," Climatic Change, Springer, vol. 132(4), pages 723-737, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:4:y:2019:i:2:p:66-:d:229344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.