IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1345-d902625.html
   My bibliography  Save this article

A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain

Author

Listed:
  • Juan J. Cubillas

    (Department Tecnologías de la Información y Comunicación Aplicadas a la Educación, Universidad Internacional de La Rioja, 26006 Logroño, Spain)

  • María I. Ramos

    (Department Ingeniería Cartográfica, Geodésica y Fotogrametría, Universidad de Jaén, 23071 Jaén, Spain)

  • Juan M. Jurado

    (Department Lenguajes y Sistemas Informáticos, Universidad de Granada, 18071 Granada, Spain)

  • Francisco R. Feito

    (Department Informática, Universidad de Jaén, 23071 Jaén, Spain)

Abstract

Predictive systems are a crucial tool in management and decision-making in any productive sector. In the case of agriculture, it is especially interesting to have advance information on the profitability of a farm. In this sense, depending on the time of the year when this information is available, important decisions can be made that affect the economic balance of the farm. The aim of this study is to develop an effective model for predicting crop yields in advance that is accessible and easy to use by the farmer or farm manager from a web-based application. In this case, an olive orchard in the Andalusia region of southern Spain was used. The model was estimated using spatio-temporal training data, such as yield data from eight consecutive years, and more than twenty meteorological parameters data, automatically charged from public web services, belonging to a weather station located near the sample farm. The workflow requires selecting the parameters that influence the crop prediction and discarding those that introduce noise into the model. The main contribution of this research is the early prediction of crop yield with absolute errors better than 20%, which is crucial for making decisions on tillage investments and crop marketing.

Suggested Citation

  • Juan J. Cubillas & María I. Ramos & Juan M. Jurado & Francisco R. Feito, 2022. "A Machine Learning Model for Early Prediction of Crop Yield, Nested in a Web Application in the Cloud: A Case Study in an Olive Grove in Southern Spain," Agriculture, MDPI, vol. 12(9), pages 1-26, August.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1345-:d:902625
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mary Carey, 2019. "The Common Agricultural Policy's New Delivery Model Post‐2020: National Administration Perspective," EuroChoices, The Agricultural Economics Society, vol. 18(1), pages 11-17, April.
    2. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    3. Rocco Mafrica & Amalia Piscopo & Alessandra De Bruno & Marco Poiana, 2021. "Effects of Climate on Fruit Growth and Development on Olive Oil Quality in Cultivar Carolea," Agriculture, MDPI, vol. 11(2), pages 1-18, February.
    4. Mª. Isabel Ramos & Juan José Cubillas & Juan Manuel Jurado & Wilfredo Lopez & Francisco R. Feito & Manuel Quero & Jose Maria Gonzalez, 2019. "Prediction of the increase in health services demand based on the analysis of reasons of calls received by a customer relationship management," International Journal of Health Planning and Management, Wiley Blackwell, vol. 34(2), pages 1215-1222, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pankaj Das & Girish Kumar Jha & Achal Lama & Rajender Parsad, 2023. "Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil ( Lens culinaris Medik.)," Agriculture, MDPI, vol. 13(3), pages 1-13, February.
    2. Dimitre D. Dimitrov, 2023. "Internet and Computers for Agriculture," Agriculture, MDPI, vol. 13(1), pages 1-7, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Aurora Cirillo & Lucia De Luca & Giulia Graziani & Marco Cepparulo & Christophe El-Nakhel & Maria Giordano & Youssef Rouphael & Alberto Ritieni & Raffaele Romano & Claudio Di Vaio, 2022. "Biostimulants Application on Olea europaea L. in Mediterranean Conditions Increase the Production and Bioactive Compounds of Drupes and Oil," Agriculture, MDPI, vol. 12(12), pages 1-17, December.
    3. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    4. Lili Tenea, 2021. "Reforms Of The Common Agricultural Policy - From Ensuring Food Security To Rural Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 104-113, August.
    5. Martínez-Alvarez, V. & García-Bastida, P.A. & Martin-Gorriz, B. & Soto-García, M., 2014. "Adaptive strategies of on-farm water management under water supply constraints in south-eastern Spain," Agricultural Water Management, Elsevier, vol. 136(C), pages 59-67.
    6. Farnaz Pourzand & Ilan Noy & Yigit Saglam, 2019. "Droughts and farms' financial performance in New Zealand: a micro farm-level study," CESifo Working Paper Series 7633, CESifo.
    7. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    8. Lorite, I.J. & Gabaldón-Leal, C. & Ruiz-Ramos, M. & Belaj, A. & de la Rosa, R. & León, L. & Santos, C., 2018. "Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 247-261.
    9. Krzysztof Rutkowski & Grzegorz P. Łysiak, 2023. "Influence of Mulching on Replantation Disease in Sour Cherry Orchard," Agriculture, MDPI, vol. 13(8), pages 1-30, August.
    10. Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
    11. Shrestha, Shailesh & Ciaian, Pavel & Himics, Mihay & Van Doorslaer, Benjamin, 2013. "Impacts of Climate Change on EU Agriculture," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 16(2), pages 1-16, September.
    12. Sonia Quiroga & Emilio Cerdá, 2017. "Exploring farmers? selection of crop protection levels as an adaptation strategy to climate risks," Proceedings of Economics and Finance Conferences 4507414, International Institute of Social and Economic Sciences.
    13. Shrestha, Shailesh & Himics, Mihaly & Van Doorslaer, Benjamin & Ciaian, Pavel, 2012. "EU wide regional impacts of climate change," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122546, European Association of Agricultural Economists.
    14. Fadul, E. & Masih, I. & De Fraiture, C., 2019. "Adaptation strategies to cope with low, high and untimely floods: Lessons from the Gash spate irrigation system, Sudan," Agricultural Water Management, Elsevier, vol. 217(C), pages 212-225.
    15. Silva, Vicente de P.R. & Campos, João H.B.C. & Silva, Madson T. & Azevedo, Pedro V., 2010. "Impact of global warming on cowpea bean cultivation in northeastern Brazil," Agricultural Water Management, Elsevier, vol. 97(11), pages 1760-1768, November.
    16. Pourzand, Farnaz & Noy, Ilan & Sağlam, Yiğit, 2020. "Droughts and farms’ financial performance: a farm‐level study in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    17. Mario Cunha & Christian Richter, 2016. "The impact of climate change on the winegrape vineyards of the Portuguese Douro region," Climatic Change, Springer, vol. 138(1), pages 239-251, September.
    18. Mario Cunha & Christian Richter, 2018. "Impact Of Climate Dynamics On Cyclical Properties Of Wine Production In Douro Region Using A Time-Frequency Approach," Working Papers 47, The German University in Cairo, Faculty of Management Technology.
    19. Roberto Cagliero & Francesco Bellini & Francesco Marcatto & Silvia Novelli & Alessandro Monteleone & Giampiero Mazzocchi, 2021. "Prioritising CAP Intervention Needs: An Improved Cumulative Voting Approach," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    20. Behnam Mirgol & Meisam Nazari & Mohammad Eteghadipour, 2020. "Modelling Climate Change Impact on Irrigation Water Requirement and Yield of Winter Wheat ( Triticum aestivum L.), Barley ( Hordeum vulgare L.), and Fodder Maize ( Zea mays L.) in the Semi-Arid Qazvin," Agriculture, MDPI, vol. 10(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1345-:d:902625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.