IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v106y2021icp76-87.html
   My bibliography  Save this article

Understanding non-commuting travel demand of car commuters – Insights from ANPR trip chain data in Cambridge

Author

Listed:
  • Wan, Li
  • Tang, Junqing
  • Wang, Lihua
  • Schooling, Jennifer

Abstract

The paper investigates the non-commuting travel demand of car commuters using Automatic Number Plate Recognition (ANPR) trip chain data in Cambridge, UK. A novel rule-based algorithm is developed for identifying commuting vehicles and the associated non-commuting trips. Identification results are validated with external data. Non-commuting travel demand is investigated in terms of trip probability, average trip frequency, duration and demand elasticity. The study finds that, first, non-commuting trips represent a significant source of travel demand for car commuters – car commuters who engage in non-commuting activities in their daily trip chains would on average spend approximately 2.7hr on those activities including travel time on a typical workday in Cambridge. Second, longer working hours are associated with a lower probability of engaging in non-commuting trips, implying a substitution effect within the daily travel time budget. Last, in terms of travel demand elasticity, non-commuting trips starting in the early morning (6–9am) are less elastic than those starting in the morning (9–12am) and during the lunch break (12-3pm). The varying demand elasticities are likely to be attributed to the different travel constraints associated with certain trip purposes. Implications for post-pandemic traffic demand and management are drawn.

Suggested Citation

  • Wan, Li & Tang, Junqing & Wang, Lihua & Schooling, Jennifer, 2021. "Understanding non-commuting travel demand of car commuters – Insights from ANPR trip chain data in Cambridge," Transport Policy, Elsevier, vol. 106(C), pages 76-87.
  • Handle: RePEc:eee:trapol:v:106:y:2021:i:c:p:76-87
    DOI: 10.1016/j.tranpol.2021.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21000834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frank Primerano & Michael Taylor & Ladda Pitaksringkarn & Peter Tisato, 2008. "Defining and understanding trip chaining behaviour," Transportation, Springer, vol. 35(1), pages 55-72, January.
    2. Alex Anas, 2015. "Why Are Urban Travel Times So Stable?," Journal of Regional Science, Wiley Blackwell, vol. 55(2), pages 230-261, March.
    3. Tian, Li-Jun & Huang, Hai-Jun, 2015. "Modeling the modal split and trip scheduling with commuters’ uncertainty expectation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 815-822.
    4. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    5. Yang, Liya & Shen, Qing & Li, Zhibin, 2016. "Comparing travel mode and trip chain choices between holidays and weekdays," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 273-285.
    6. Jan-Dirk Schmöcker & Fengming Su & Robert Noland, 2010. "An analysis of trip chaining among older London residents," Transportation, Springer, vol. 37(1), pages 105-123, January.
    7. Ying Hui & Mengtao Ding & Kun Zheng & Dong Lou, 2017. "Observing Trip Chain Characteristics of Round-Trip Carsharing Users in China: A Case Study Based on GPS Data in Hangzhou City," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    8. Li, Zhibin & Wang, Wei & Yang, Chen & Jiang, Guojun, 2013. "Exploring the causal relationship between bicycle choice and trip chain pattern," Transport Policy, Elsevier, vol. 29(C), pages 170-177.
    9. Long Cheng & Xuewu Chen & Shuo Yang, 2016. "An exploration of the relationships between socioeconomics, land use and daily trip chain pattern among low-income residents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(4), pages 358-369, June.
    10. Golob, Thomas F., 2000. "A simultaneous model of household activity participation and trip chain generation," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 355-376, June.
    11. Zidan Mao & Dick Ettema & Martin Dijst, 2018. "Analysis of travel time and mode choice shift for non-work stops in commuting: case study of Beijing, China," Transportation, Springer, vol. 45(3), pages 751-766, May.
    12. Tang, Jiafu & Yu, Yang & Li, Jia, 2015. "An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and delivery of customers to the airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 114-132.
    13. David Metz, 2021. "Time constraints and travel behaviour," Transportation Planning and Technology, Taylor & Francis Journals, vol. 44(1), pages 16-29, January.
    14. Lu, Xiao-Shan & Liu, Tian-Liang & Huang, Hai-Jun, 2015. "Pricing and mode choice based on nested logit model with trip-chain costs," Transport Policy, Elsevier, vol. 44(C), pages 76-88.
    15. Ye, Xin & Pendyala, Ram M. & Gottardi, Giovanni, 2007. "An exploration of the relationship between mode choice and complexity of trip chaining patterns," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 96-113, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Moeinaddini, Amin & Habibian, Meeghat, 2023. "Transportation demand management policy efficiency: An attempt to address the effectiveness and acceptability of policy packages," Transport Policy, Elsevier, vol. 141(C), pages 317-330.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yuqiao & Gao, Linjie & Ni, Anning & Liu, Xiaoning, 2021. "Analysis of travel mode choice and trip chain pattern relationships based on multi-day GPS data: A case study in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 93(C).
    2. Florian Schneider & Danique Ton & Lara-Britt Zomer & Winnie Daamen & Dorine Duives & Sascha Hoogendoorn-Lanser & Serge Hoogendoorn, 2021. "Trip chain complexity: a comparison among latent classes of daily mobility patterns," Transportation, Springer, vol. 48(2), pages 953-975, April.
    3. Bautista-Hernández, Dorian Antonio, 2022. "Individual, household, and urban form determinants of trip chaining of non-work travel in México City," Journal of Transport Geography, Elsevier, vol. 98(C).
    4. Michael Duncan, 2016. "How much can trip chaining reduce VMT? A simplified method," Transportation, Springer, vol. 43(4), pages 643-659, July.
    5. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.
    6. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2016. "Measuring the impacts of weather variability on home-based trip chaining behaviour: a focus on spatial heterogeneity," Transportation, Springer, vol. 43(5), pages 843-867, September.
    7. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    8. Subbarao, S.S.V. & Krishna Rao, K,V., 2013. "Trip Chaining Behavior in Developing Countries: A Study of Mumbai Metropolitan Region, India," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    9. Cong Qi & Zhenjun Zhu & Xiucheng Guo & Ruiying Lu & Junlan Chen, 2020. "Examining Interrelationships between Tourist Travel Mode and Trip Chain Choices Using the Nested Logit Model," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    10. Günter Wallner & Simone Kriglstein & Edward Chung & Syeed Anta Kashfi, 2018. "Visualisation of trip chaining behaviour and mode choice using household travel survey data," Public Transport, Springer, vol. 10(3), pages 427-453, December.
    11. Liya Yang & Lingqian Hu & Zhenbo Wang, 2019. "The built environment and trip chaining behaviour revisited: The joint effects of the modifiable areal unit problem and tour purpose," Urban Studies, Urban Studies Journal Limited, vol. 56(4), pages 795-817, March.
    12. Bobin Wang & Chunfu Shao & Xun Ji, 2017. "Influencing Mechanism Analysis of Holiday Activity–Travel Patterns on Transportation Energy Consumption and Emissions in China," Energies, MDPI, vol. 10(7), pages 1-20, July.
    13. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    14. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
    15. Daisy, Naznin Sultana & Millward, Hugh & Liu, Lei, 2018. "Trip chaining and tour mode choice of non-workers grouped by daily activity patterns," Journal of Transport Geography, Elsevier, vol. 69(C), pages 150-162.
    16. Wang, Rui, 2015. "The stops made by commuters: evidence from the 2009 US National Household Travel Survey," Journal of Transport Geography, Elsevier, vol. 47(C), pages 109-118.
    17. Veronique Acker & Frank Witlox, 2011. "Commuting trips within tours: how is commuting related to land use?," Transportation, Springer, vol. 38(3), pages 465-486, May.
    18. Sebastian Astroza & Venu M. Garikapati & Ram M. Pendyala & Chandra R. Bhat & Patricia L. Mokhtarian, 2019. "Representing heterogeneity in structural relationships among multiple choice variables using a latent segmentation approach," Transportation, Springer, vol. 46(5), pages 1755-1784, October.
    19. Haiyan Zhu & Hongzhi Guan & Yan Han & Wanying Li, 2019. "A Study of Tourists’ Holiday Rush-Hour Avoidance Travel Behavior Considering Psychographic Segmentation," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    20. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:106:y:2021:i:c:p:76-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.