IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v103y2021icp11-20.html
   My bibliography  Save this article

Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model

Author

Listed:
  • Zhang, Yunchang
  • Fricker, Jon D.

Abstract

The coronavirus disease (COVID-19) pandemic has resulted in widespread impacts in the transportation sector due to containment measures. To better manage transportation during the COVID-19 crisis and improve future pre-pandemic planning, it is essential that we understand sufficiently the impact of the global epidemic on vehicle miles traveled, freight movement, and human mobility. The availability of pedestrian and bicycle count data allows us to estimate the causal impact of COVID-19 on non-motorized travel patterns. To quantify the causal effects of COVID-19, a Bayesian structural time series (BSTS) model is proposed, with the “treatment” date defined as the date on which the national emergency was declared. The model is intended to (1) account for variations in local trends, seasonality and exogeneous covariates before the treatment, (2) make predictions about the counterfactual trends after the treatment, (3) infer the causal effects between observed series and counterfactual series, and (4) evaluate the uncertainty about the causal inference.

Suggested Citation

  • Zhang, Yunchang & Fricker, Jon D., 2021. "Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model," Transport Policy, Elsevier, vol. 103(C), pages 11-20.
  • Handle: RePEc:eee:trapol:v:103:y:2021:i:c:p:11-20
    DOI: 10.1016/j.tranpol.2021.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21000196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Takahiro Yabe & Yunchang Zhang & Satish Ukkusuri, 2020. "Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: a Bayesian Causal Inference Approach," Papers 2004.11121, arXiv.org.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    4. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Journal of Transport Geography, Elsevier, vol. 84(C).
    5. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96g9c9nd, Institute of Transportation Studies, UC Berkeley.
    6. Alfredo Aloi & Borja Alonso & Juan Benavente & Rubén Cordera & Eneko Echániz & Felipe González & Claudio Ladisa & Raquel Lezama-Romanelli & Álvaro López-Parra & Vittorio Mazzei & Lucía Perrucci & Darí, 2020. "Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain)," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    7. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    8. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    9. Steven L. Scott & Hal R. Varian, 2015. "Bayesian Variable Selection for Nowcasting Economic Time Series," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 119-135, National Bureau of Economic Research, Inc.
    10. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    11. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    12. Matz Dahlberg & Per-Anders Edin & Erik Gronqvist & Johan Lyhagen & John Osth & Alexey Siretskiy & Marina Toger, 2020. "Effects of the COVID-19 Pandemic on Population Mobility under Mild Policies: Causal Evidence from Sweden," Papers 2004.09087, arXiv.org.
    13. Andreas Nikiforiadis & Georgia Ayfantopoulou & Afroditi Stamelou, 2020. "Assessing the Impact of COVID-19 on Bike-Sharing Usage: The Case of Thessaloniki, Greece," Sustainability, MDPI, vol. 12(19), pages 1-12, October.
    14. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shirgaokar, Manish & Reynard, Darcy & Collins, Damian, 2021. "Using twitter to investigate responses to street reallocation during COVID-19: Findings from the U.S. and Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 300-312.
    2. Yi Cao & Yixiao Wang, 2022. "Shared Cycling Demand Prediction during COVID-19 Combined with Urban Computing and Spatiotemporal Residual Network," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Li, Tao & Wang, Jiaoe & Huang, Jie & Yang, Wenyue & Chen, Zhuo, 2021. "Exploring the dynamic impacts of COVID-19 on intercity travel in China," Journal of Transport Geography, Elsevier, vol. 95(C).
    4. Elif Bozkaya & Levent Eriskin & Mumtaz Karatas, 2023. "Data analytics during pandemics: a transportation and location planning perspective," Annals of Operations Research, Springer, vol. 328(1), pages 193-244, September.
    5. Maria Cieśla & Sandra Kuśnierz & Oliwia Modrzik & Sonia Niedośpiał & Patrycja Sosna, 2021. "Scenarios for the Development of Polish Passenger Transport Services in Pandemic Conditions," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    6. Luan, Siliang & Yang, Qingfang & Jiang, Zhongtai & Wang, Wei, 2021. "Exploring the impact of COVID-19 on individual's travel mode choice in China," Transport Policy, Elsevier, vol. 106(C), pages 271-280.
    7. Xingpei Yan & Zheng Zhu, 2021. "Quantifying the impact of COVID-19 on e-bike safety in China via multi-output and clustering-based regression models," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    8. Chen, Chao & Feng, Tao & Gu, Xiaoning & Yao, Baozhen, 2022. "Investigating the effectiveness of COVID-19 pandemic countermeasures on the use of public transport: A case study of The Netherlands," Transport Policy, Elsevier, vol. 117(C), pages 98-107.
    9. Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
    10. Yang, Chao & Wan, Zhiyang & Yuan, Quan & Zhou, Yang & Sun, Maopeng, 2023. "Travel before, during and after the COVID-19 pandemic: Exploring factors in essential travel using empirical data," Journal of Transport Geography, Elsevier, vol. 110(C).
    11. Adibfar, Alireza & Gulhare, Siddhartha & Srinivasan, Siva & Costin, Aaron, 2022. "Analysis and modeling of changes in online shopping behavior due to Covid-19 pandemic: A Florida case study," Transport Policy, Elsevier, vol. 126(C), pages 162-176.
    12. Haiyan Liu & Jaeyoung Lee, 2023. "Contributing Factors to the Changes in Public and Private Transportation Mode Choice after the COVID-19 Outbreak in Urban Areas of China," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    13. Möllers, Alessa & Specht, Sebastian & Wessel, Jan, 2022. "The impact of the Covid-19 pandemic and government intervention on active mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 356-375.
    14. Shuai Yu & Bin Li & Dongmei Liu, 2023. "Exploring the Public Health of Travel Behaviors in High-Speed Railway Environment during the COVID-19 Pandemic from the Perspective of Trip Chain: A Case Study of Beijing–Tianjin–Hebei Urban Agglomera," IJERPH, MDPI, vol. 20(2), pages 1-22, January.
    15. Circella, Giovanni & Makino, Keita & Matson, Grant & Malik, Jai, 2022. "The Pulse of the Nation on 3 Revolutions: Annual Investigation of Nationwide Mobility Trends," Institute of Transportation Studies, Working Paper Series qt6h44p57d, Institute of Transportation Studies, UC Davis.
    16. Witold Torbacki, 2021. "Achieving Sustainable Mobility in the Szczecin Metropolitan Area in the Post-COVID-19 Era: The DEMATEL and PROMETHEE II Approach," Sustainability, MDPI, vol. 13(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takahiro Yabe & Yunchang Zhang & Satish Ukkusuri, 2020. "Quantifying the Economic Impact of Extreme Shocks on Businesses using Human Mobility Data: a Bayesian Causal Inference Approach," Papers 2004.11121, arXiv.org.
    2. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    3. Christian Almer & Stefan Boes & Stephan Nüesch, 2017. "Adjustments in the housing market after an environmental shock: evidence from a large-scale change in aircraft noise exposure," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 918-938.
    4. Hans-Bernd Schaefer & Rok Spruk, 2024. "Islamic Law, Western European Law and the Roots of Middle East's Long Divergence: a Comparative Empirical Investigation (800-1600)," Papers 2401.14435, arXiv.org, revised Mar 2024.
    5. Nicholas Illenberger & Dylan S. Small & Pamela A. Shaw, 2019. "Regression to the Mean's Impact on the Synthetic Control Method: Bias and Sensitivity Analysis," Papers 1909.04706, arXiv.org.
    6. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    7. Arias-Molinares, Daniela & Romanillos, Gustavo & García-Palomares, Juan Carlos & Gutiérrez, Javier, 2021. "Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Elnert Coenegrachts & Joris Beckers & Thierry Vanelslander & Ann Verhetsel, 2021. "Business Model Blueprints for the Shared Mobility Hub Network," Sustainability, MDPI, vol. 13(12), pages 1-24, June.
    9. Shu He & Jing Peng & Jianbin Li & Liping Xu, 2020. "Impact of Platform Owner’s Entry on Third-Party Stores," Information Systems Research, INFORMS, vol. 31(4), pages 1467-1484, December.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    12. Gwenolé Le Velly & Céline Dutilly, 2016. "Evaluating Payments for Environmental Services: Methodological Challenges," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    13. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Mar 2024.
    14. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    15. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    16. Riggs, William & Kawashima, Matt & Batstone, David, 2021. "Exploring best practice for municipal e-scooter policy in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 18-27.
    17. Philipp Breidenbach & Timo Mitze, 2022. "Large-scale sport events and COVID-19 infection effects: evidence from the German professional football ‘experiment’ [Semiparametric difference-in-differences estimators]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 15-45.
    18. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.
    19. Clément de Chaisemartin & Pierre‐Yves Geoffard & Anne‐Laurence le Faou, 2011. "Workplace smoking ban effects on unhappy smokers," Health Economics, John Wiley & Sons, Ltd., vol. 20(9), pages 1043-1055, September.
    20. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:103:y:2021:i:c:p:11-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.