IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v179y2023ics1366554523002697.html
   My bibliography  Save this article

Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system

Author

Listed:
  • Chen, Wanying (Amanda)
  • De Koster, René
  • Gong, Yeming

Abstract

In the last decade, different multi-deep rack climbing robotic (MRR) systems have been introduced, particularly in e-commerce warehouses. These systems have great benefits, as aisles are no longer needed, allowing a high storage density on a small footprint. They only need vertical channels through which battery-powered robots can climb the racks, retrieve totes from any desired position, and bring them to a workstation. This paper studies two novel MRR system layouts: the cross and the compact layout. In addition, we compare performance with the more traditional aisle-based layout. The system performance, particularly operational cost and energy consumption, depends on these system layouts. The paper establishes queuing network models to investigate the trade-off between storage capacity and throughput of the system with these three layouts, taking robot blocking prevention into account. We compare the throughput, storage density, horizontal travel time, and energy consumption of the system. The results show that, in most cases, the compact layout outperforms other layouts on throughput. For energy consumption, the choice of layout depends on the footprint. We formulate a model to assist warehouse managers in choosing a layout of minimum annual operational cost, with a required storage and throughput capacity. We also compare the MRR system with an alternative robotic compact storage and retrieval system on operational cost and energy consumption. The MRR system appears to always have lower energy consumption and operational cost.

Suggested Citation

  • Chen, Wanying (Amanda) & De Koster, René & Gong, Yeming, 2023. "Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:transe:v:179:y:2023:i:c:s1366554523002697
    DOI: 10.1016/j.tre.2023.103281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523002697
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingying Wu & Chen Zhou & Wenkai Ma & Xiang T. R. Kong, 2020. "Modelling and design for a shuttle-based storage and retrieval system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4808-4828, July.
    2. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    3. Gue, Kevin R. & Ivanović, Goran & Meller, Russell D., 2012. "A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 795-806.
    4. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    5. Xie, Weijun & Ouyang, Yanfeng, 2015. "Optimal layout of transshipment facility locations on an infinite homogeneous plane," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 74-88.
    6. Ronald Buitenhek & Geert‐Jan van Houtum & Henk Zijm, 2000. "AMVA‐based solution procedures for open queueing networks with population constraints," Annals of Operations Research, Springer, vol. 93(1), pages 15-40, January.
    7. Riccardo Manzini & Riccardo Accorsi & Giulia Baruffaldi & Teresa Cennerazzo & Mauro Gamberi, 2016. "Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS)," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4286-4304, July.
    8. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    9. Tutam, Mahmut & White, John A., 2019. "Multi-dock unit-load warehouse designs with a cross-aisle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 247-262.
    10. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    11. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    3. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    4. Dong, Wenquan & Jin, Mingzhou, 2024. "Automated storage and retrieval system design with variant lane depths," European Journal of Operational Research, Elsevier, vol. 314(2), pages 630-646.
    5. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    6. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    7. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    8. Yi Li & Zhiyang Li, 2022. "Shuttle-Based Storage and Retrieval System: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    9. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    10. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    11. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    12. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    13. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    14. Lamballais, T. & Roy, D. & de Koster, M.B.M., 2017. "Inventory Allocation in Robotic Mobile Fulfillment Systems," ERIM Report Series Research in Management ERS-2017-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.
    17. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    19. Hamzaoui, Mohammed A. & Arbaoui, Taha & Yalaoui, Farouk & Sari, Zaki, 2021. "An exact optimization method based on dominance properties for the design of AS/RSs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    20. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:179:y:2023:i:c:s1366554523002697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.