IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v54y2016i14p4286-4304.html
   My bibliography  Save this article

Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS)

Author

Listed:
  • Riccardo Manzini
  • Riccardo Accorsi
  • Giulia Baruffaldi
  • Teresa Cennerazzo
  • Mauro Gamberi

Abstract

Autonomous vehicle storage and retrieval systems use vehicles that move horizontally along rails within the storage racks, while vertical movements are provided by lifts. The solution proposed in this paper addresses a particular system configuration that works with multiple deep storage lanes that are widely used in the food and beverage industry, characterised by large volumes of products of limited variety. The generic deep lane is single item, i.e. one stock keeping unit, and single batch, i.e. one production lot, thereby affecting the performance of the system in terms of storage capacity utilisation and throughput. Determining the number and depth of the lanes is crucial to aid the design and control of such a storage system. The aim of this paper was to support the design of AVS/RSs though a set of original analytic models for the determination of the travelled distance and time for single-command and dual-command cycles given alternative layout configurations. The models are validated by simulation and exemplified with a real-warehousing case study. The paper presents useful guidelines for the configuration of the system layout including the determination of the optimal shape ratio and the length of the lanes.

Suggested Citation

  • Riccardo Manzini & Riccardo Accorsi & Giulia Baruffaldi & Teresa Cennerazzo & Mauro Gamberi, 2016. "Travel time models for deep-lane unit-load autonomous vehicle storage and retrieval system (AVS/RS)," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4286-4304, July.
  • Handle: RePEc:taf:tprsxx:v:54:y:2016:i:14:p:4286-4304
    DOI: 10.1080/00207543.2016.1144241
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1144241
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1144241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    2. Li Zhang & Ananth Krishnamurthy & Charles J. Malmborg & Sunderesh S. Heragu, 2009. "Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 3(2), pages 146-169.
    3. Jang, Dong-Won & Kim, Se Won & Kim, Kap Hwan, 2013. "The optimization of mixed block stacking requiring relocations," International Journal of Production Economics, Elsevier, vol. 143(2), pages 256-262.
    4. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    2. Chen, Wanying (Amanda) & De Koster, René & Gong, Yeming, 2023. "Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    3. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Emanuele Guerrazzi & Valeria Mininno & Davide Aloini & Riccardo Dulmin & Claudio Scarpelli & Marco Sabatini, 2019. "Energy Evaluation of Deep-Lane Autonomous Vehicle Storage and Retrieval System," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    5. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    6. Yang, Peng & Yang, Kaidong & Qi, Mingyao & Miao, Lixin & Ye, Bin, 2017. "Designing the optimal multi-deep AS/RS storage rack under full turnover-based storage policy based on non-approximate speed model of S/R machine," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 113-130.
    7. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Martin Epp & Simon Wiedemann & Kai Furmans, 2017. "A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 960-978, February.
    3. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    4. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    5. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    6. Azadeh, K. & Roy, D. & de Koster, M.B.M., 2016. "Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    8. Tappia, E. & Roy, D. & de Koster, M.B.M. & Melacini, M., 2015. "Modeling, Analysis, and Design Insights for Shuttle-based Compact Storage Systems," ERIM Report Series Research in Management ERS-2015-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    10. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    11. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    12. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2015. "Stochastic models for unit-load operations in warehouse systems with autonomous vehicles," Annals of Operations Research, Springer, vol. 231(1), pages 129-155, August.
    13. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    14. Carlo, Héctor J. & Vis, Iris F.A., 2012. "Sequencing dynamic storage systems with multiple lifts and shuttles," International Journal of Production Economics, Elsevier, vol. 140(2), pages 844-853.
    15. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    16. Chakravorty, Satya S., 2009. "Improving distribution operations: Implementation of material handling systems," International Journal of Production Economics, Elsevier, vol. 122(1), pages 89-106, November.
    17. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    18. Chen, Lu & Langevin, André & Riopel, Diane, 2011. "A tabu search algorithm for the relocation problem in a warehousing system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 147-156, January.
    19. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    20. Gianluca Nastasi & Valentina Colla & Silvia Cateni & Simone Campigli, 2018. "Implementation and comparison of algorithms for multi-objective optimization based on genetic algorithms applied to the management of an automated warehouse," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1545-1557, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:54:y:2016:i:14:p:4286-4304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.