IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v155y2021ics1366554521002477.html
   My bibliography  Save this article

Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules

Author

Listed:
  • Dong, Wenquan
  • Jin, Mingzhou

Abstract

This paper explores both random and class-based storage policies and three shuttle dispatching rules, random, distance-based, and demand-rate based, for a tier-to-tier shuttle-based storage and retrieval system (SBS/RS). Modeling the system as a discrete-time Markov Chain, this study derived the shuttle distribution under each policy combination, and further developed the expected travel time models for both single-command (SC) and dual-command (DC) operations. The developed models can help a warehouse designer or manager to comprehensively make four decisions for SBS/RS, whether SC or DC operations should be adopted, the most appropriate storage policy, the best shuttle dispatching rule, and the number of shuttles. The travel time models can evaluate each possible policy combination quickly through multiple criteria, such as the capacity, customer responsiveness, and costs of shuttles. Numerical experiments showed significant impacts of the policy combination on the expected travel time. Class-based storage, if implementable, is always better than random storage under each combination of shuttle dispatching rule and operational mode (i.e., SC or DC). Under random storage and SC operations, the distance-based shuttle dispatching rule is always better than the random rule, and their difference is concave in the number of shuttles. When classed-based storage is adopted and the number of shuttles is small, the demand-rate-based rule is the best under SC operations. Its benefit becomes more obvious when demand rates become more heterogeneous until some point but decreases as the system has more shuttles. Under DC Operations, depending on equipment speeds, the distance-based shuttle dispatching rule can be worse than the random rule under random storage. Under class-based storage and DC operations, the demand-rate-based rule is still the best when demand rates are heterogeneous. The differences between SC and DC operations are more significant when demand rates are more homogenous. When a system wants to be more responsive to customers, it should be run under SC operations. If the overall capacity is of interest, DC operations are much better.

Suggested Citation

  • Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:transe:v:155:y:2021:i:c:s1366554521002477
    DOI: 10.1016/j.tre.2021.102485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554521002477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2021.102485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yingying Wu & Chen Zhou & Wenkai Ma & Xiang T. R. Kong, 2020. "Modelling and design for a shuttle-based storage and retrieval system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4808-4828, July.
    2. Francesco Zammori & Mattia Neroni & Davide Mezzogori, 2021. "Cycle time calculation of shuttle-lift-crane automated storage and retrieval system," IISE Transactions, Taylor & Francis Journals, vol. 54(1), pages 40-59, October.
    3. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    4. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-02313400, HAL.
    5. Banu Yetkin Ekren, 2017. "Graph-based solution for performance evaluation of shuttle-based storage and retrieval system," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6516-6526, November.
    6. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    7. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    8. Xiao Cai & Sunderesh S. Heragu & Yang Liu, 2014. "Modeling and evaluating the AVS/RS with tier-to-tier vehicles using a semi-open queueing network," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 905-927, September.
    9. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    10. Carlo, Héctor J. & Vis, Iris F.A., 2012. "Sequencing dynamic storage systems with multiple lifts and shuttles," International Journal of Production Economics, Elsevier, vol. 140(2), pages 844-853.
    11. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    12. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    13. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    14. Nima Zaerpour & Yugang Yu & René de Koster, 2017. "Small is Beautiful: A Framework for Evaluating and Optimizing Live-Cube Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 34-51, February.
    15. Yanyan Wang & Shandong Mou & Yaohua Wu, 2015. "Task scheduling for multi-tier shuttle warehousing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5884-5895, October.
    16. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    17. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    18. Zou, Bipan & Xu, Xianhao & (Yale) Gong, Yeming & De Koster, René, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 51-67.
    19. Yunsoo Ha & Junjae Chae, 2019. "A decision model to determine the number of shuttles in a tier-to-tier SBS/RS," International Journal of Production Research, Taylor & Francis Journals, vol. 57(4), pages 963-984, February.
    20. Yang, Peng & Yang, Kaidong & Qi, Mingyao & Miao, Lixin & Ye, Bin, 2017. "Designing the optimal multi-deep AS/RS storage rack under full turnover-based storage policy based on non-approximate speed model of S/R machine," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 113-130.
    21. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    22. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    23. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    24. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    25. Tone Lerher, 2016. "Travel time model for double-deep shuttle-based storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2519-2540, May.
    26. Xianhao Xu & Guwen Shen & Yugang Yu & Wei Huang, 2015. "Travel time analysis for the double-deep dual-shuttle AS/RS," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 757-773, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Buckow, Jan-Niklas & Knust, Sigrid, 2023. "The warehouse reshuffling problem with swap moves," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    3. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    4. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    5. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    6. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    7. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    8. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    9. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    10. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    12. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    13. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    14. Yanyan Wang & Jinning Qin & Shandong Mou & Ke Huang & Xiaofeng Zhao, 2023. "DSS approach for sustainable system design of shuttle-based storage and retrieval systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 698-726, September.
    15. Yi Li & Zhiyang Li, 2022. "Shuttle-Based Storage and Retrieval System: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    16. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    17. Mirzaei, Masoud & Zaerpour, Nima & de Koster, René, 2021. "The impact of integrated cluster-based storage allocation on parts-to-picker warehouse performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    18. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.
    19. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    20. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:155:y:2021:i:c:s1366554521002477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.