IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/95392.html
   My bibliography  Save this paper

Inventory Allocation in Robotic Mobile Fulfillment Systems

Author

Listed:
  • Lamballais, T.
  • Roy, D.
  • de Koster, M.B.M.

Abstract

A Robotic Mobile Fulfillment System is a recently developed automated, parts-to- picker material handling system. Robots can move storage shelves, also known as inventory pods, between the storage area and the workstations and can continually reposition them during operations. This paper shows how to optimize three key decision variables: (1) the number of pods per product (2) the ratio of the number of pick stations to replenishment stations, and (3) the replenishment level per pod. Our results show that throughput performance improves substantially when inventory is spread across multiple pods, when an optimum ratio between the number of pick stations to replenishment stations is achieved and when a pod is replenished before it is completely empty. This paper contributes methodologically by introducing a new type of Semi-Open Queueing Networks (SOQN): cross-class matching multi- class SOQN, by deriving necessary stability conditions, and by introducing a novel interpretation of the classes.

Suggested Citation

  • Lamballais, T. & Roy, D. & de Koster, M.B.M., 2017. "Inventory Allocation in Robotic Mobile Fulfillment Systems," ERIM Report Series Research in Management ERS-2017-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:95392
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/95392/ERS-2017-001-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald Buitenhek & Geert‐Jan van Houtum & Henk Zijm, 2000. "AMVA‐based solution procedures for open queueing networks with population constraints," Annals of Operations Research, Springer, vol. 93(1), pages 15-40, January.
    2. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2015. "Stochastic models for unit-load operations in warehouse systems with autonomous vehicles," Annals of Operations Research, Springer, vol. 231(1), pages 129-155, August.
    3. Debjit Roy & Ananth Krishnamurthy & Sunderesh S. Heragu & Charles J. Malmborg, 2016. "A simulation framework for studying blocking effects in warehouse systems with autonomous vehicles," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(1), pages 51-80.
    4. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    5. Roy, Debjit & Krishnamurthy, Ananth & Heragu, Sunderesh & Malmborg, Charles, 2015. "Queuing models to analyze dwell-point and cross-aisle location in autonomous vehicle-based warehouse systems," European Journal of Operational Research, Elsevier, vol. 242(1), pages 72-87.
    6. Fukunari, Miki & Malmborg, Charles J., 2009. "A network queuing approach for evaluation of performance measures in autonomous vehicle storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 193(1), pages 152-167, February.
    7. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    2. Calzavara, Martina & Sgarbossa, Fabio & Persona, Alessandro, 2019. "Vertical Lift Modules for small items order picking: an economic evaluation," International Journal of Production Economics, Elsevier, vol. 210(C), pages 199-210.
    3. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    2. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    3. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    4. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    5. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    6. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    7. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Martin Epp & Simon Wiedemann & Kai Furmans, 2017. "A discrete-time queueing network approach to performance evaluation of autonomous vehicle storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 960-978, February.
    9. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    10. Azadeh, K. & Roy, D. & de Koster, M.B.M., 2016. "Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    12. Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).
    13. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    14. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    15. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    16. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    17. Carmen, Raïsa & Van Nieuwenhuyse, Inneke & Van Houdt, Benny, 2018. "Inpatient boarding in emergency departments: Impact on patient delays and system capacity," European Journal of Operational Research, Elsevier, vol. 271(3), pages 953-967.
    18. Chen, Wanying (Amanda) & De Koster, René & Gong, Yeming, 2023. "Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    19. Dhingra, Vibhuti & Kumawat, Govind Lal & Roy, Debjit & Koster, René de, 2018. "Solving semi-open queuing networks with time-varying arrivals: An application in container terminal landside operations," European Journal of Operational Research, Elsevier, vol. 267(3), pages 855-876.
    20. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:95392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.