IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v91y2016icp366-382.html
   My bibliography  Save this article

Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security

Author

Listed:
  • Reilly, Jack
  • Martin, Sébastien
  • Payer, Mathias
  • Bayen, Alexandre M.

Abstract

This article presents a study on freeway networks instrumented with coordinated ramp metering and the ability of such control systems to produce arbitrarily complex congestion patterns within the dynamical limits of the traffic system. The developed method is used to evaluate the potential for an adversary with access to control infrastructure to enact high-level attacks on the underlying freeway system. The attacks are executed using a predictive, coordinated ramp metering controller based on finite-horizon optimal control and multi-objective optimization techniques. The efficacy of the control schemes in carrying out the prescribed attacks is determined via simulations of traffic network models based on the cell transmission model with onramps modeled as queue buffers. Freeway attacks with high-level objectives are presented on two illustrative examples: congestion-on-demand, which aims to create precise, user-specified pockets of congestion, and catch-me-if-you-can, which attempts to aid a fleeing vehicle from pursuant vehicles.

Suggested Citation

  • Reilly, Jack & Martin, Sébastien & Payer, Mathias & Bayen, Alexandre M., 2016. "Creating complex congestion patterns via multi-objective optimal freeway traffic control with application to cyber-security," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 366-382.
  • Handle: RePEc:eee:transb:v:91:y:2016:i:c:p:366-382
    DOI: 10.1016/j.trb.2016.05.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516303307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.05.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigo C. Carlson & Ioannis Papamichail & Markos Papageorgiou & Albert Messmer, 2010. "Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering," Transportation Science, INFORMS, vol. 44(2), pages 238-253, May.
    2. Zhang, Lei & Levinson, David, 2004. "Optimal freeway ramp control without origin-destination information," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 869-887, December.
    3. Haddad, Jack & Ramezani, Mohsen & Geroliminis, Nikolas, 2013. "Cooperative traffic control of a mixed network with two urban regions and a freeway," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 17-36.
    4. Athanasios K. Ziliaskopoulos, 2000. "A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 34(1), pages 37-49, February.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. M. Gugat & M. Herty & A. Klar & G. Leugering, 2005. "Optimal Control for Traffic Flow Networks," Journal of Optimization Theory and Applications, Springer, vol. 126(3), pages 589-616, September.
    7. Smaragdis, Emmanouil & Papageorgiou, Markos & Kosmatopoulos, Elias, 2004. "A flow-maximizing adaptive local ramp metering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 251-270, March.
    8. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    9. Chen, Danjue & Ahn, Soyoung & Hegyi, Andreas, 2014. "Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 340-358.
    10. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    11. Lo, Hong K. & Szeto, W. Y., 2002. "A cell-based variational inequality formulation of the dynamic user optimal assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 421-443, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    2. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.
    3. Lopez, Anthony & Jin, Wenlong & Al Faruque, Mohammad Abdullah, 2020. "Security analysis for fixed-time traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 473-495.
    4. Haddad, Jack & Mirkin, Boris, 2020. "Resilient perimeter control of macroscopic fundamental diagram networks under cyberattacks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 44-59.
    5. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    6. Wang, Pengcheng & Yu, Guizhen & Wu, Xinkai & Qin, Hongmao & Wang, Yunpeng, 2018. "An extended car-following model to describe connected traffic dynamics under cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 351-370.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmitt, Marius & Ramesh, Chithrupa & Lygeros, John, 2017. "Sufficient optimality conditions for distributed, non-predictive ramp metering in the monotonic cell transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 401-422.
    2. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Yuan, Tianchen & Ioannou, Petros A., 2023. "Coordinated Traffic Flow Control in a Connected Environment," Institute of Transportation Studies, Working Paper Series qt6q67f9z4, Institute of Transportation Studies, UC Davis.
    4. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    5. Chi Xie & Jennifer Duthie, 2015. "An Excess-Demand Dynamic Traffic Assignment Approach for Inferring Origin-Destination Trip Matrices," Networks and Spatial Economics, Springer, vol. 15(4), pages 947-979, December.
    6. Han, Youngjun & Chen, Danjue & Ahn, Soyoung, 2017. "Variable speed limit control at fixed freeway bottlenecks using connected vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 113-134.
    7. Samitha Samaranayake & Walid Krichene & Jack Reilly & Maria Laura Delle Monache & Paola Goatin & Alexandre Bayen, 2018. "Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks," Transportation Science, INFORMS, vol. 52(4), pages 982-1001, August.
    8. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    9. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    10. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    11. Gentile, Guido & Meschini, Lorenzo & Papola, Natale, 2007. "Spillback congestion in dynamic traffic assignment: A macroscopic flow model with time-varying bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1114-1138, December.
    12. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    13. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    14. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    15. Hong Zheng & Yi-Chang Chiu, 2011. "A Network Flow Algorithm for the Cell-Based Single-Destination System Optimal Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 45(1), pages 121-137, February.
    16. Jack Reilly & Samitha Samaranayake & Maria Laura Delle Monache & Walid Krichene & Paola Goatin & Alexandre M. Bayen, 2015. "Adjoint-Based Optimization on a Network of Discretized Scalar Conservation Laws with Applications to Coordinated Ramp Metering," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 733-760, November.
    17. Carey, Malachy & Watling, David, 2012. "Dynamic traffic assignment approximating the kinematic wave model: System optimum, marginal costs, externalities and tolls," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 634-648.
    18. Ding, Heng & Zhang, Lang & Chen, Jin & Zheng, Xiaoyan & Pan, Hao & Zhang, Weihua, 2023. "MPC-based dynamic speed control of CAVs in multiple sections upstream of the bottleneck area within a mixed vehicular environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    19. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    20. He, Sheng-Xue, 2016. "Will a higher free-flow speed lead us to a less congested freeway?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 17-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:91:y:2016:i:c:p:366-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.