IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v44y2010i1p50-61.html
   My bibliography  Save this article

Bidline scheduling with equity by heuristic dynamic constraint aggregation

Author

Listed:
  • Boubaker, Khaled
  • Desaulniers, Guy
  • Elhallaoui, Issmail

Abstract

The bidline scheduling problem with equity arises in several North American airlines. It consists of determining anonymous monthly schedules, called bidlines, that will be subsequently assigned to the crew members according to their bids and seniority. These bidlines must satisfy safety and collective agreement rules. Furthermore, to ensure an equity between the employees, each bidline should have as much as possible the same number of days off and the same number of credited (paid) hours. In this paper, we propose an approximate set partitioning type formulation for this problem and two heuristics for solving it. The first one is a standard branch-and-price heuristic that relies on a rounding procedure to derive integer solutions. The second one is obtained by combining this first heuristic with a dynamic constraint aggregation method that was recently proposed in the literature. Computational results show that, for the largest tested instances, the dynamic constraint aggregation heuristic can produce better quality solutions in a fraction of the computational time required by the standard branch-and-price heuristic.

Suggested Citation

  • Boubaker, Khaled & Desaulniers, Guy & Elhallaoui, Issmail, 2010. "Bidline scheduling with equity by heuristic dynamic constraint aggregation," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 50-61, January.
  • Handle: RePEc:eee:transb:v:44:y:2010:i:1:p:50-61
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00074-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diego Klabjan, 2005. "Large-Scale Models in the Airline Industry," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 163-195, Springer.
    2. M. L. Balinski & R. E. Quandt, 1964. "On an Integer Program for a Delivery Problem," Operations Research, INFORMS, vol. 12(2), pages 300-304, April.
    3. E. Rod Butchers & Paul R. Day & Andrew P. Goldie & Stephen Miller & Jeff A. Meyer & David M. Ryan & Amanda C. Scott & Chris A. Wallace, 2001. "Optimized Crew Scheduling at Air New Zealand," Interfaces, INFORMS, vol. 31(1), pages 30-56, February.
    4. Balaji Gopalakrishnan & Ellis. Johnson, 2005. "Airline Crew Scheduling: State-of-the-Art," Annals of Operations Research, Springer, vol. 140(1), pages 305-337, November.
    5. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    6. Ioannis T. Christou & Armand Zakarian & Jun-Min Liu & Helen Carter, 1999. "A Two-Phase Genetic Algorithm for Large-Scale Bidline-Generation Problems at Delta Air Lines," Interfaces, INFORMS, vol. 29(5), pages 51-65, October.
    7. Kevin W. Campbell & R. Bret Durfee & Gail S. Hines, 1997. "FedEx Generates Bid Lines Using Simulated Annealing," Interfaces, INFORMS, vol. 27(2), pages 1-16, April.
    8. R. S. Garfinkel & G. L. Nemhauser, 1969. "The Set-Partitioning Problem: Set Covering with Equality Constraints," Operations Research, INFORMS, vol. 17(5), pages 848-856, October.
    9. Michel Gamache & François Soumis & Daniel Villeneuve & Jacques Desrosiers & Éric Gélinas, 1998. "The Preferential Bidding System at Air Canada," Transportation Science, INFORMS, vol. 32(3), pages 246-255, August.
    10. Michel Gamache & François Soumis & Gérald Marquis & Jacques Desrosiers, 1999. "A Column Generation Approach for Large-Scale Aircrew Rostering Problems," Operations Research, INFORMS, vol. 47(2), pages 247-263, April.
    11. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    12. Jeffery Weir & Ellis Johnson, 2004. "A Three-Phase Approach to Solving the Bidline Problem," Annals of Operations Research, Springer, vol. 127(1), pages 283-308, March.
    13. Niklas Kohl & Stefan Karisch, 2004. "Airline Crew Rostering: Problem Types, Modeling, and Optimization," Annals of Operations Research, Springer, vol. 127(1), pages 223-257, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saddoune, Mohammed & Desaulniers, Guy & Elhallaoui, Issmail & Soumis, François, 2011. "Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 445-454, August.
    2. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    3. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    4. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    5. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    6. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    2. Mohammed Saddoune & Guy Desaulniers & Issmail Elhallaoui & François Soumis, 2012. "Integrated Airline Crew Pairing and Crew Assignment by Dynamic Constraint Aggregation," Transportation Science, INFORMS, vol. 46(1), pages 39-55, February.
    3. Quesnel, Frédéric & Desaulniers, Guy & Soumis, François, 2020. "A branch-and-price heuristic for the crew pairing problem with language constraints," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1040-1054.
    4. Vahid Zeighami & François Soumis, 2019. "Combining Benders’ Decomposition and Column Generation for Integrated Crew Pairing and Personalized Crew Assignment Problems," Transportation Science, INFORMS, vol. 53(5), pages 1479-1499, September.
    5. Saddoune, Mohammed & Desaulniers, Guy & Elhallaoui, Issmail & Soumis, François, 2011. "Integrated airline crew scheduling: A bi-dynamic constraint aggregation method using neighborhoods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 445-454, August.
    6. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    7. Heykel Achour & Michel Gamache & François Soumis & Guy Desaulniers, 2007. "An Exact Solution Approach for the Preferential Bidding System Problem in the Airline Industry," Transportation Science, INFORMS, vol. 41(3), pages 354-365, August.
    8. Jesica Armas & Luis Cadarso & Angel A. Juan & Javier Faulin, 2017. "A multi-start randomized heuristic for real-life crew rostering problems in airlines with work-balancing goals," Annals of Operations Research, Springer, vol. 258(2), pages 825-848, November.
    9. Silke Jütte & Marc Albers & Ulrich W. Thonemann & Knut Haase, 2011. "Optimizing Railway Crew Scheduling at DB Schenker," Interfaces, INFORMS, vol. 41(2), pages 109-122, April.
    10. Abdelouahab Zaghrouti & Issmail El Hallaoui & François Soumis, 2020. "Improving set partitioning problem solutions by zooming around an improving direction," Annals of Operations Research, Springer, vol. 284(2), pages 645-671, January.
    11. Sebastian Ruther & Natashia Boland & Faramroze G. Engineer & Ian Evans, 2017. "Integrated Aircraft Routing, Crew Pairing, and Tail Assignment: Branch-and-Price with Many Pricing Problems," Transportation Science, INFORMS, vol. 51(1), pages 177-195, February.
    12. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    13. Jütte, Silke & Thonemann, Ulrich W., 2012. "Divide-and-price: A decomposition algorithm for solving large railway crew scheduling problems," European Journal of Operational Research, Elsevier, vol. 219(2), pages 214-223.
    14. Mehran Hojati, 2010. "Near-optimal solution to an employee assignment problem with seniority," Annals of Operations Research, Springer, vol. 181(1), pages 539-557, December.
    15. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    16. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    17. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    18. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    19. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    20. Kirsten Hoffmann & Udo Buscher & Janis Sebastian Neufeld & Felix Tamke, 2017. "Solving Practical Railway Crew Scheduling Problems with Attendance Rates," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 147-159, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:44:y:2010:i:1:p:50-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.