IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v37y2003i4p301-322.html
   My bibliography  Save this article

A comparative analysis of bus transit vehicle scheduling models

Author

Listed:
  • Haghani, Ali
  • Banihashemi, Mohamadreza
  • Chiang, Kun-Hung

Abstract

No abstract is available for this item.

Suggested Citation

  • Haghani, Ali & Banihashemi, Mohamadreza & Chiang, Kun-Hung, 2003. "A comparative analysis of bus transit vehicle scheduling models," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 301-322, May.
  • Handle: RePEc:eee:transb:v:37:y:2003:i:4:p:301-322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(02)00007-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Celso C. Ribeiro & François Soumis, 1994. "A Column Generation Approach to the Multiple-Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 42(1), pages 41-52, February.
    2. Carraresi, P. & Gallo, G., 1984. "Network models for vehicle and crew scheduling," European Journal of Operational Research, Elsevier, vol. 16(2), pages 139-151, May.
    3. Haghani, Ali & Banihashemi, Mohamadreza, 2002. "Heuristic approaches for solving large-scale bus transit vehicle scheduling problem with route time constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 309-333, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    2. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    3. Higgins, Andrew, 2006. "Scheduling of road vehicles in sugarcane transport: A case study at an Australian sugar mill," European Journal of Operational Research, Elsevier, vol. 170(3), pages 987-1000, May.
    4. Uçar, Ezgi & İlker Birbil, Ş. & Muter, İbrahim, 2017. "Managing disruptions in the multi-depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 249-269.
    5. Pan, Hanchuan & Liu, Zhigang & Yang, Lixing & Liang, Zhe & Wu, Qiang & Li, Sijie, 2021. "A column generation-based approach for integrated vehicle and crew scheduling on a single metro line with the fully automatic operation system by partial supervision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Ciancio, Claudio & Laganà, Demetrio & Musmanno, Roberto & Santoro, Francesco, 2018. "An integrated algorithm for shift scheduling problems for local public transport companies," Omega, Elsevier, vol. 75(C), pages 139-153.
    7. Hassold, Stephan & Ceder, Avishai (Avi), 2014. "Public transport vehicle scheduling featuring multiple vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 129-143.
    8. Shafahi, Yousef & Khani, Alireza, 2010. "A practical model for transfer optimization in a transit network: Model formulations and solutions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(6), pages 377-389, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kulkarni, Sarang & Krishnamoorthy, Mohan & Ranade, Abhiram & Ernst, Andreas T. & Patil, Rahul, 2018. "A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 457-487.
    2. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    3. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    4. Benchimol, Pascal & Desaulniers, Guy & Desrosiers, Jacques, 2012. "Stabilized dynamic constraint aggregation for solving set partitioning problems," European Journal of Operational Research, Elsevier, vol. 223(2), pages 360-371.
    5. Uçar, Ezgi & İlker Birbil, Ş. & Muter, İbrahim, 2017. "Managing disruptions in the multi-depot vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 249-269.
    6. Haghani, Ali & Banihashemi, Mohamadreza, 2002. "Heuristic approaches for solving large-scale bus transit vehicle scheduling problem with route time constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 309-333, May.
    7. Jonathan D. Adler & Pitu B. Mirchandani, 2017. "The Vehicle Scheduling Problem for Fleets with Alternative-Fuel Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 441-456, May.
    8. Jing-Quan Li, 2014. "Transit Bus Scheduling with Limited Energy," Transportation Science, INFORMS, vol. 48(4), pages 521-539, November.
    9. Gkiotsalitis, K. & Iliopoulou, C. & Kepaptsoglou, K., 2023. "An exact approach for the multi-depot electric bus scheduling problem with time windows," European Journal of Operational Research, Elsevier, vol. 306(1), pages 189-206.
    10. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Ahmed Hadjar & Odile Marcotte & François Soumis, 2006. "A Branch-and-Cut Algorithm for the Multiple Depot Vehicle Scheduling Problem," Operations Research, INFORMS, vol. 54(1), pages 130-149, February.
    12. Vaidyanathan, Balachandran, 2007. "Multi-Commodity Network Flow Based Approaches for the Railroad Crew Scheduling Problem," 48th Annual Transportation Research Forum, Boston, Massachusetts, March 15-17, 2007 207928, Transportation Research Forum.
    13. Gábor Maróti & Leo Kroon, 2005. "Maintenance Routing for Train Units: The Transition Model," Transportation Science, INFORMS, vol. 39(4), pages 518-525, November.
    14. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    15. Van der Perre, Peter P. G. & Van Oudheusden, Dirk D. L., 1997. "Reducing depot-related costs of large bus operators a case study in Bangkok," European Journal of Operational Research, Elsevier, vol. 96(1), pages 45-53, January.
    16. Roca-Riu, Mireia & Estrada, Miquel & Trapote, César, 2012. "The design of interurban bus networks in city centers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1153-1165.
    17. Alexander Kunith & Roman Mendelevitch & Dietmar Goehlich, 2016. "Electrification of a City Bus Network: An Optimization Model for Cost-Effective Placing of Charging Infrastructure and Battery Sizing of Fast Charging Electric Bus Systems," Discussion Papers of DIW Berlin 1577, DIW Berlin, German Institute for Economic Research.
    18. Enzi, Miriam & Parragh, Sophie N. & Pisinger, David & Prandtstetter, Matthias, 2021. "Modeling and solving the multimodal car- and ride-sharing problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 290-303.
    19. Blanco, Víctor & Conde, Eduardo & Hinojosa, Yolanda & Puerto, Justo, 2020. "An optimization model for line planning and timetabling in automated urban metro subway networks. A case study," Omega, Elsevier, vol. 92(C).
    20. Beasley, J. E. & Cao, B., 1996. "A tree search algorithm for the crew scheduling problem," European Journal of Operational Research, Elsevier, vol. 94(3), pages 517-526, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:37:y:2003:i:4:p:301-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.