IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v29y1995i4p297-302.html
   My bibliography  Save this article

On deterministic developments of traffic stream models

Author

Listed:
  • Nelson, Paul

Abstract

Classical deterministic (or "mechanical") developments of traffic stream models from car-following models are criticized on the following basis. The evaluation of the constant of integration for initial conditions corresponding to speed zero and headway equal to the reciprocal of jam density ignores large numbers of possibly relevant solutions of the underlying car-following model. Some undesirable consequences, particularly the restriction to temporally and spatially constant flow conditions, of viewing traffic stream models as being deterministic consequences of car-following models are also noted. It is suggested that an approach to traffic stream models via kinetic models possibly would be more appropriate and useful.

Suggested Citation

  • Nelson, Paul, 1995. "On deterministic developments of traffic stream models," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 297-302, August.
  • Handle: RePEc:eee:transb:v:29:y:1995:i:4:p:297-302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0191-2615(95)00006-Y
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    2. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    3. Newell, G. F., 1989. "Comments on traffic dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 23(5), pages 386-389, October.
    4. Daganzo, Carlos F., 1995. "Requiem for second-order fluid approximations of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 277-286, August.
    5. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    6. Denos C. Gazis & Robert Herman & Renfrey B. Potts, 1959. "Car-Following Theory of Steady-State Traffic Flow," Operations Research, INFORMS, vol. 7(4), pages 499-505, August.
    7. N/A, 1989. "Comments," ILR Review, Cornell University, ILR School, vol. 43(1), pages 89-102, October.
    8. Leo, Chin Jian & Pretty, Robert L., 1992. "Numerical simulation of macroscopic continuum traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 26(3), pages 207-220, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Nelson & Bryan Raney, 1999. "Objectives and Benchmarks for Kinetic Theories of Vehicular Traffic," Transportation Science, INFORMS, vol. 33(3), pages 298-314, August.
    2. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    3. Nelson, Paul & Sopasakis, Alexandros, 1998. "The prigogine-herman kinetic model predicts widely scattered traffic flow data at high concentrations," Transportation Research Part B: Methodological, Elsevier, vol. 32(8), pages 589-604, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    2. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    3. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.
    4. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    5. Jin, Wen-Long, 2016. "On the equivalence between continuum and car-following models of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 543-559.
    6. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    7. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    8. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    9. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    10. Piotr Gołębiowski & Jolanta Żak & Ilona Jacyna-Gołda, 2020. "Approach to the Proecological Distribution of the Traffic Flow on the Transport Network from the Point of View of Carbon Dioxide," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    11. Mohammadian, Saeed & Zheng, Zuduo & Haque, Md. Mazharul & Bhaskar, Ashish, 2021. "Performance of continuum models for realworld traffic flows: Comprehensive benchmarking," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 132-167.
    12. Jabari, Saif Eddin & Zheng, Jianfeng & Liu, Henry X., 2014. "A probabilistic stationary speed–density relation based on Newell’s simplified car-following model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 205-223.
    13. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    14. Zhang, H. M., 2002. "A non-equilibrium traffic model devoid of gas-like behavior," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 275-290, March.
    15. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    16. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    17. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    18. Papageorgiou, Markos, 1998. "Some remarks on macroscopic traffic flow modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 323-329, September.
    19. Daiheng Ni & John D. Leonard & Chaoqun Jia & Jianqiang Wang, 2016. "Vehicle Longitudinal Control and Traffic Stream Modeling," Transportation Science, INFORMS, vol. 50(3), pages 1016-1031, August.
    20. Wang, Haizhong & Li, Jia & Chen, Qian-Yong & Ni, Daiheng, 2011. "Logistic modeling of the equilibrium speed-density relationship," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 554-566, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:29:y:1995:i:4:p:297-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.