IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v101y2017icp228-244.html
   My bibliography  Save this article

Robust routing and timetabling in complex railway stations

Author

Listed:
  • Burggraeve, Sofie
  • Vansteenwegen, Pieter

Abstract

In nearly saturated station areas the limited capacity is one of the main reasons of delay propagation. Spreading the trains well in time and space in these areas has a big impact on the passenger robustness, i.e. the total travel time in practice of all passengers in the railway network in case of frequently occurring small delays. We focus on improving the performance in the bottleneck of the network in order to improve the performance of the whole railway network. This paper proposes a method that builds from scratch a routing plan and a cyclic timetable that optimizes the infrastructure occupation and the passenger robustness. An integer linear routing model assigns, without considering a timetable, every train to a route such that the maximal node usage is minimized and that the number of times that each node is used, is quadratically penalized. Thereafter, a mixed integer linear timetabling model assigns to each train the blocking times at which the nodes on its route, assigned by the routing model, are reserved and released. Different from other approaches is that we focus on the occupation of the railway infrastructure before constructing the timetable. The approach is validated on the complex railway station area of Brussels (Belgium). Our routing plan and timetable from scratch improve the passenger robustness up to 11% compared to a reference timetable and routing plan composed by the Belgian railway infrastructure manager Infrabel and by up to 2% compared to a reference timetable and routing plan from literature.

Suggested Citation

  • Burggraeve, Sofie & Vansteenwegen, Pieter, 2017. "Robust routing and timetabling in complex railway stations," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 228-244.
  • Handle: RePEc:eee:transb:v:101:y:2017:i:c:p:228-244
    DOI: 10.1016/j.trb.2017.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516305768
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2017.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
    2. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    3. Bešinović, Nikola & Goverde, Rob M.P. & Quaglietta, Egidio & Roberti, Roberto, 2016. "An integrated micro–macro approach to robust railway timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 14-32.
    4. Zwaneveld, Peter J. & Kroon, Leo G. & van Hoesel, Stan P. M., 2001. "Routing trains through a railway station based on a node packing model," European Journal of Operational Research, Elsevier, vol. 128(1), pages 14-33, January.
    5. Peter J. Zwaneveld & Leo G. Kroon & H. Edwin Romeijn & Marc Salomon & Stéphane Dauzère-Pérès & Stan P. M. Van Hoesel & Harrie W. Ambergen, 1996. "Routing Trains Through Railway Stations: Model Formulation and Algorithms," Transportation Science, INFORMS, vol. 30(3), pages 181-194, August.
    6. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    7. Richard Lusby & Jesper Larsen & David Ryan & Matthias Ehrgott, 2011. "Routing Trains Through Railway Junctions: A New Set-Packing Approach," Transportation Science, INFORMS, vol. 45(2), pages 228-245, May.
    8. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    9. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    10. G. Caimi & F. Chudak & M. Fuchsberger & M. Laumanns & R. Zenklusen, 2011. "A New Resource-Constrained Multicommodity Flow Model for Conflict-Free Train Routing and Scheduling," Transportation Science, INFORMS, vol. 45(2), pages 212-227, May.
    11. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    12. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lebing Wang & Jian Gang Jin & Gleb Sibul & Yi Wei, 2023. "Designing Metro Network Expansion: Deterministic and Robust Optimization Models," Networks and Spatial Economics, Springer, vol. 23(1), pages 317-347, March.
    2. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    3. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    4. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    5. Wenliang Zhou & Xiaorong You & Wenzhuang Fan, 2020. "A Mixed Integer Linear Programming Method for Simultaneous Multi-Periodic Train Timetabling and Routing on a High-Speed Rail Network," Sustainability, MDPI, vol. 12(3), pages 1-34, February.
    6. Trepat Borecka, Jacob & Bešinović, Nikola, 2021. "Scheduling multimodal alternative services for managing infrastructure maintenance possessions in railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 147-174.
    7. Vladimír Ľupták & Paweł Droździel & Ondrej Stopka & Mária Stopková & Iwona Rybicka, 2019. "Approach Methodology for Comprehensive Assessing the Public Passenger Transport Timetable Performances at a Regional Scale," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    8. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    2. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    3. Dewilde, Thijs & Sels, Peter & Cattrysse, Dirk & Vansteenwegen, Pieter, 2014. "Improving the robustness in railway station areas," European Journal of Operational Research, Elsevier, vol. 235(1), pages 276-286.
    4. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    5. Hassini, Elkafi & Verma, Manish, 2016. "Disruption risk management in railroad networks: An optimization-based methodology and a case studyAuthor-Name: Azad, Nader," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 70-88.
    6. Vansteenwegen, Pieter & Dewilde, Thijs & Burggraeve, Sofie & Cattrysse, Dirk, 2016. "An iterative approach for reducing the impact of infrastructure maintenance on the performance of railway systems," European Journal of Operational Research, Elsevier, vol. 252(1), pages 39-53.
    7. Nikola Bešinović & Rob M. P. Goverde, 2019. "Stable and robust train routing in station areas with balanced infrastructure capacity occupation," Public Transport, Springer, vol. 11(2), pages 211-236, August.
    8. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    9. Samà, Marcella & Pellegrini, Paola & D’Ariano, Andrea & Rodriguez, Joaquin & Pacciarelli, Dario, 2016. "Ant colony optimization for the real-time train routing selection problem," Transportation Research Part B: Methodological, Elsevier, vol. 85(C), pages 89-108.
    10. Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
    11. Högdahl, Johan & Bohlin, Markus & Fröidh, Oskar, 2019. "A combined simulation-optimization approach for minimizing travel time and delays in railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 192-212.
    12. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    13. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    14. Pellegrini, Paola & Rodriguez, Joaquin, 2013. "Single European Sky and Single European Railway Area: A system level analysis of air and rail transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 64-86.
    15. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    16. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    17. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    18. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    19. Gábor Maróti, 2017. "A branch-and-bound approach for robust railway timetabling," Public Transport, Springer, vol. 9(1), pages 73-94, July.
    20. Nie, Wei & Li, Hao & Xiao, Na & Yang, Hao & Jiang, Zhishu & Buhigiro, Nsabimana, 2021. "Modeling and solving the last-shift period train scheduling problem in subway networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:101:y:2017:i:c:p:228-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.