IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v121y2019icp235-250.html
   My bibliography  Save this article

Development of rail transit network over multiple time periods

Author

Listed:
  • Peng, Ya-Ting
  • Li, Zhi-Chun
  • Schonfeld, Paul

Abstract

This paper addresses the development issue of interrelated rail transit projects in an urban rail transit network over multiple time periods. It extends the traditional network design problems by explicitly considering the time horizon and interrelations among investment projects in the rail transit network. The proposed model determines which projects in the rail transit network should be selected and completed at what times (i.e., project selection, investment sequence and completion time), while jointly optimizing the evolving headways of rail transit lines due to change in rail network configuration, so as to minimize the total discounted cost of the rail transit system over the planning horizon. In addition to the financial budget provided by relevant agencies (e.g., governments), we consider fare revenue generated from the operations of previous completed rail projects as an internal source of funding for later rail projects. A genetic algorithm is adapted to solve this model and tested on the rail transit network development of Wuhan China. Sensitivity analysis is conducted to ascertain the effects of some important factors on the development plan, such as travel demand and annual financial budget.

Suggested Citation

  • Peng, Ya-Ting & Li, Zhi-Chun & Schonfeld, Paul, 2019. "Development of rail transit network over multiple time periods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 235-250.
  • Handle: RePEc:eee:transa:v:121:y:2019:i:c:p:235-250
    DOI: 10.1016/j.tra.2019.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418308656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szeto, W.Y. & Lo, Hong K., 2008. "Time-dependent transport network improvement and tolling strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 376-391, February.
    2. Wang, David Z.W. & Liu, Haoxiang & Szeto, W.Y., 2015. "A novel discrete network design problem formulation and its global optimization solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 213-230.
    3. Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
    4. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    5. Wang, Guangmin & Gao, Ziyou & Xu, Meng & Sun, Huijun, 2014. "Joint link-based credit charging and road capacity improvement in continuous network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 1-14.
    6. MA, Xiaosu & LO, Hong K., 2013. "On joint railway and housing development strategy," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 451-467.
    7. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    8. Luathep, Paramet & Sumalee, Agachai & Lam, William H.K. & Li, Zhi-Chun & Lo, Hong K., 2011. "Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 808-827, June.
    9. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    10. Peng, Ya-Ting & Li, Zhi-Chun & Choi, Keechoo, 2017. "Transit-oriented development in an urban rail transportation corridor," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 269-290.
    11. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    12. Jong, Jyh-Cherng & Schonfeld, Paul, 2003. "An evolutionary model for simultaneously optimizing three-dimensional highway alignments," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 107-128, February.
    13. Ukkusuri, Satish V. & Patil, Gopal, 2009. "Multi-period transportation network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 625-642, July.
    14. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Sumalee, A., 2012. "Design of a rail transit line for profit maximization in a linear transportation corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 50-70.
    15. Ng, Ka Fai & Lo, Hong K., 2017. "On joint railway and housing development: Housing-led versus railway-led schemes," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 464-488.
    16. Wang, David Z.W. & Lo, Hong K., 2016. "Financial sustainability of rail transit service: The effect of urban development pattern," Transport Policy, Elsevier, vol. 48(C), pages 23-33.
    17. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    18. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Choi, Keechoo, 2012. "Modeling the effects of integrated rail and property development on the design of rail line services in a linear monocentric city," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 710-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.
    2. Liang, Jinpeng & Zang, Guangzhi & Liu, Haitao & Zheng, Jianfeng & Gao, Ziyou, 2023. "Reducing passenger waiting time in oversaturated metro lines with passenger flow control policy," Omega, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhijia & Yang, Hai & Tan, Wei & Li, Zhichun, 2016. "Pareto-improving transportation network design and ownership regimes," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 292-309.
    2. Di, Zhen & Yang, Lixing & Qi, Jianguo & Gao, Ziyou, 2018. "Transportation network design for maximizing flow-based accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 209-238.
    3. Liu, Haoxiang & Szeto, W.Y. & Long, Jiancheng, 2019. "Bike network design problem with a path-size logit-based equilibrium constraint: Formulation, global optimization, and matheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 284-307.
    4. Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
    5. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    6. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    7. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    8. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    9. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    10. Huai, Yue & Lo, Hong K. & Ng, Ka Fai, 2021. "Monocentric versus polycentric urban structure: Case study in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 99-118.
    11. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    12. Peng, Ya-Ting & Li, Zhi-Chun & Choi, Keechoo, 2017. "Transit-oriented development in an urban rail transportation corridor," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 269-290.
    13. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    14. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
    15. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    16. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    17. Liu, Haoxiang & Wang, David Z.W., 2015. "Global optimization method for network design problem with stochastic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 20-39.
    18. Wang, Shuaian & Meng, Qiang & Yang, Hai, 2013. "Global optimization methods for the discrete network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 42-60.
    19. Szeto, W.Y. & Jiang, Y., 2014. "Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 235-263.
    20. Miralinaghi, Mohammad & Seilabi, Sania E. & Chen, Sikai & Hsu, Yu-Ting & Labi, Samuel, 2020. "Optimizing the selection and scheduling of multi-class projects using a Stackelberg framework," European Journal of Operational Research, Elsevier, vol. 286(2), pages 508-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:121:y:2019:i:c:p:235-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.