IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v112y2016icp347-356.html
   My bibliography  Save this article

Development trajectory and research themes of foresight

Author

Listed:
  • Lu, Louis Y.Y.
  • Hsieh, Chih-Hung
  • Liu, John S.

Abstract

This study integrates the edge-betweenness clustering technique and key-route main path analysis to analyse the ‘broad foresight’ literature. We retrieve the relevant papers from the Thomson Reuters Web of Science databases and construct the citation network among them. The edge-betweenness clustering identifies six research groups in the ‘broad foresight’ literature. Three major research groups and their major research themes are ‘technology foresight’, ‘futures studies’, and ‘technology forecasting’. The other three are ‘scenario analysis’, ‘future-oriented technology analysis (FTA)’, and ‘technology forecasting using data envelopment analysis (TFDEA)’. We apply main path analysis to explore the overall development trajectory and the linkage among different research groups. We believe that the results are valuable for those who are interested in comprehending the overall development picture of ‘broad foresight’. The approach used herein is also applicable to other fields.

Suggested Citation

  • Lu, Louis Y.Y. & Hsieh, Chih-Hung & Liu, John S., 2016. "Development trajectory and research themes of foresight," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 347-356.
  • Handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:347-356
    DOI: 10.1016/j.techfore.2016.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516302001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2016.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis Y. Y. Lu & John S. Liu, 2013. "An innovative approach to identify the knowledge diffusion path: the case of resource-based theory," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 225-246, January.
    2. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    3. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    4. Cagnin, Cristiano & Havas, Attila & Saritas, Ozcan, 2013. "Future-oriented technology analysis: Its potential to address disruptive transformations," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 379-385.
    5. Lim, Dong-Joon & Anderson, Timothy R. & Inman, Oliver Lane, 2014. "Choosing effective dates from multiple optima in Technology Forecasting using Data Envelopment Analysis (TFDEA)," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 91-97.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    7. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    8. Haegeman, Karel & Marinelli, Elisabetta & Scapolo, Fabiana & Ricci, Andrea & Sokolov, Alexander, 2013. "Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration?," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 386-397.
    9. Kwakkel, Jan H. & Pruyt, Erik, 2013. "Exploratory Modeling and Analysis, an approach for model-based foresight under deep uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 419-431.
    10. Kerstin Cuhls, 2003. "From forecasting to foresight processes-new participative foresight activities in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 93-111.
    11. Ozcan Saritas & Serhat Burmaoglu, 2015. "The evolution of the use of Foresight methods: a scientometric analysis of global FTA research output," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 497-508, October.
    12. Jan de Wilt & Barend van der Meulen & Hans Rutten, 2003. "Developing futures for agriculture in the Netherlands: a systematic exploration of the strategic value of foresight," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 219-233.
    13. Georghiou, Luke & Cassingena Harper, Jennifer, 2013. "Rising to the challenges—Reflections on Future-oriented Technology Analysis," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 467-470.
    14. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    2. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2019. "Bibliographically coupled patents: Their temporal pattern and combined relevance," Journal of Informetrics, Elsevier, vol. 13(4).
    3. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Liao, Shu-Chun & Chou, Tzu-Chuan & Huang, Chen-Hao, 2022. "Revisiting the development trajectory of the digital divide: A main path analysis approach," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    5. Ba, Zhichao & Ma, Yaxue & Cai, Jinyao & Li, Gang, 2023. "A citation-based research framework for exploring policy diffusion: Evidence from China's new energy policies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    6. Merit Tatar & Tarmo Kalvet & Marek Tiits, 2020. "Cities4ZERO Approach to Foresight for Fostering Smart Energy Transition on Municipal Level," Energies, MDPI, vol. 13(14), pages 1-30, July.
    7. Harwood, Stephen & Eaves, Sally, 2020. "Conceptualising technology, its development and future: The six genres of technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    8. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2018. "Missing links: Timing characteristics and their implications for capturing contemporaneous technological developments," Journal of Informetrics, Elsevier, vol. 12(1), pages 259-270.
    9. Fang Han & Sejun Yoon & Nagarajan Raghavan & Hyunseok Park, 2022. "Investigating Company’s Technical Development Directions Based on Internal Knowledge Inheritance and Inventor Capabilities: The Case of Samsung Electronics," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    10. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    2. Chuang, Thomas C. & Liu, John S. & Lu, Louis Y.Y. & Lee, Yachi, 2014. "The main paths of medical tourism: From transplantation to beautification," Tourism Management, Elsevier, vol. 45(C), pages 49-58.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    4. Lu, Louis Y.Y. & Liu, John S., 2016. "A novel approach to identify the major research themes and development trajectory: The case of patenting research," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 71-82.
    5. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    6. Elizabeth Gibson & Tugrul Daim & Edwin Garces & Marina Dabic, 2018. "Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(1), pages 6-24.
    7. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    8. Vincent C. Ma & John S. Liu, 2016. "Exploring the research fronts and main paths of literature: a case study of shareholder activism research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 33-52, October.
    9. Chun-Hua Hsiao & Kai-Yu Tang & John S. Liu, 2015. "Citation-based analysis of literature: a case study of technology acceptance research," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 1091-1110, November.
    10. Mei Hsiu-Ching Ho & Vincent H. Lin & John S. Liu, 2014. "Exploring knowledge diffusion among nations: a study of core technologies in fuel cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 149-171, July.
    11. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    12. Ying Huang & Donghua Zhu & Yue Qian & Yi Zhang & Alan L. Porter & Yuqin Liu & Ying Guo, 2017. "A hybrid method to trace technology evolution pathways: a case study of 3D printing," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 185-204, April.
    13. Xiao, Yu & Lu, Louis Y.Y. & Liu, John S. & Zhou, Zhili, 2014. "Knowledge diffusion path analysis of data quality literature: A main path analysis," Journal of Informetrics, Elsevier, vol. 8(3), pages 594-605.
    14. Zhong, Sheng & Verspagen, Bart, 2016. "The role of technological trajectories in catching-up-based development: An application to energy efficiency technologies," MERIT Working Papers 2016-013, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Hansin Bilgili & Jonathan L. Johnson & Tsvetomira V. Bilgili & Alan E. Ellstrand, 2022. "Research on social relationships and processes governing the behaviors of members of the corporate elite: a review and bibliometric analysis," Review of Managerial Science, Springer, vol. 16(8), pages 2285-2339, November.
    16. Hiran H. Lathabai & Susan George & Thara Prabhakaran & Manoj Changat, 2018. "An integrated approach to path analysis for weighted citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1871-1904, December.
    17. Mei Hsiu-Ching Ho & John S. Liu & Kerr C.-T. Chang, 2017. "To include or not: the role of review papers in citation-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 65-76, January.
    18. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    19. Zhu, Hengmin & Yin, Xicheng & Ma, Jing & Hu, Wei, 2016. "Identifying the main paths of information diffusion in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 320-328.
    20. Paliokaitė, Agnė & Martinaitis, Žilvinas & Sarpong, David, 2016. "Implementing smart specialisation roadmaps in Lithuania: Lost in translation?," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 143-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:112:y:2016:i:c:p:347-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.