IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v117y2018i3d10.1007_s11192-018-2917-1.html
   My bibliography  Save this article

An integrated approach to path analysis for weighted citation networks

Author

Listed:
  • Hiran H. Lathabai

    (University of Kerala)

  • Susan George

    (University of Kerala)

  • Thara Prabhakaran

    (University of Kerala)

  • Manoj Changat

    (University of Kerala)

Abstract

Profuse growth of scientometrics as a research field owes a discernible attribution to the introduction of citation networks and other scientograms. Centrality analysis, path analysis and cluster analysis are three major network analysis tools. Hummon and Doreian’s introduction of path retrieval methods based on (1) traversal count as weight assignment (for arcs) method and (2) search methods such as local (forward) search and global search, marked the commencement of path analysis. Original Hummon–Doreian traversal count based weight assignment methods such as Search Path Link Count and Search Path Node Pair were computationally complex. Along with the computational improvement of these weights, Batagelj added another computationally efficient traversal count method to the path analysis literature known as Search Path Count. A major development in search methods was seen recently with the introduction of innovative search methods such as backward (local) search and key-route (local and global) search by Liu and Lu. They also powered the available and new local search methods with a parameter to control the search. Major advantage of Liu–Lu methods lies in the fact that these can reveal more paths or more papers that are usually missed out in classical methods. All these contributions considered unweighted citation networks as the object of analysis. Despite being a tool of tremendous potential, path analysis is much underexplored relative to other network analysis tools. Inspired by these, we generalise Liu–Lu integrated approach, the present state-of-art in path analysis to an integrated approach for weighted networks. We demonstrate a manifold improvement in analysis opportunities with the generalized integrated approach using FV gradient weights for weight assignment, on a case study of the field ‘IT for engineering’. Integrated approach for weighted networks do not need additional implementation effort in PAJEK and this will be beneficial for a multitude of analysts and decision makers.

Suggested Citation

  • Hiran H. Lathabai & Susan George & Thara Prabhakaran & Manoj Changat, 2018. "An integrated approach to path analysis for weighted citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1871-1904, December.
  • Handle: RePEc:spr:scient:v:117:y:2018:i:3:d:10.1007_s11192-018-2917-1
    DOI: 10.1007/s11192-018-2917-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2917-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2917-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calero-Medina, Clara & Noyons, Ed C.M., 2008. "Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field," Journal of Informetrics, Elsevier, vol. 2(4), pages 272-279.
    2. Kavitha Karunan & Hiran H. Lathabai & Thara Prabhakaran, 2017. "Discovering interdisciplinary interactions between two research fields using citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 335-367, October.
    3. Hiran H. Lathabai & Thara Prabhakaran & Manoj Changat, 2017. "Contextual productivity assessment of authors and journals: a network scientometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 711-737, February.
    4. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    5. Arianna Martinelli & Önder Nomaler, 2014. "Measuring knowledge persistence: a genetic approach to patent citation networks," Journal of Evolutionary Economics, Springer, vol. 24(3), pages 623-652, July.
    6. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "Data envelopment analysis 1978–2010: A citation-based literature survey," Omega, Elsevier, vol. 41(1), pages 3-15.
    7. John S. Liu & Louis Y.Y. Lu, 2012. "An integrated approach for main path analysis: Development of the Hirsch index as an example," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(3), pages 528-542, March.
    8. Leo Egghe & Ronald Rousseau, 2002. "Co-citation, bibliographic coupling and a characterization of lattice citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(3), pages 349-361, November.
    9. Prabhakaran, Thara & Lathabai, Hiran H. & Changat, Manoj, 2015. "Detection of paradigm shifts and emerging fields using scientific network: A case study of Information Technology for Engineering," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 124-145.
    10. Lathabai, Hiran H. & Prabhakaran, Thara & Changat, Manoj, 2015. "Centrality and Flow Vergence gradient based Path analysis of scientific literature: A case study of Biotechnology for Engineering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 157-168.
    11. John S. Liu & Hsiao-Hui Chen & Mei Hsiu-Ching Ho & Yu-Chen Li, 2014. "Citations with different levels of relevancy: Tracing the main paths of legal opinions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(12), pages 2479-2488, December.
    12. Sepideh Kaffash & Marianna Marra, 2017. "Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds," Annals of Operations Research, Springer, vol. 253(1), pages 307-344, June.
    13. Mina, A. & Ramlogan, R. & Tampubolon, G. & Metcalfe, J.S., 2007. "Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge," Research Policy, Elsevier, vol. 36(5), pages 789-806, June.
    14. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    15. Xiao, Yu & Lu, Louis Y.Y. & Liu, John S. & Zhou, Zhili, 2014. "Knowledge diffusion path analysis of data quality literature: A main path analysis," Journal of Informetrics, Elsevier, vol. 8(3), pages 594-605.
    16. Chuang, Thomas C. & Liu, John S. & Lu, Louis Y.Y. & Lee, Yachi, 2014. "The main paths of medical tourism: From transplantation to beautification," Tourism Management, Elsevier, vol. 45(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Zeng & Stacy Hyun Nam Lee & Chris Kwan Yu Lo, 2020. "The Role of Information Systems in the Sustainable Development of Enterprises: A Systematic Literature Network Analysis," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    2. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    3. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    4. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Erin H.J. & Jeong, Yoo Kyung & Kim, YongHwan & Song, Min, 2022. "Exploring scientific trajectories of a large-scale dataset using topic-integrated path extraction," Journal of Informetrics, Elsevier, vol. 16(1).
    2. Hiran H. Lathabai & Thara Prabhakaran & Manoj Changat, 2017. "Contextual productivity assessment of authors and journals: a network scientometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 711-737, February.
    3. Junmo Kim & Juneseuk Shin, 2018. "Mapping extended technological trajectories: integration of main path, derivative paths, and technology junctures," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1439-1459, September.
    4. John S. Liu & Louis Y. Y. Lu & Mei Hsiu-Ching Ho, 2019. "A few notes on main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 379-391, April.
    5. Bruno Miranda Henrique & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Building direct citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 817-832, May.
    6. Flavia Filippin, 2021. "Do main paths reflect technological trajectories? Applying main path analysis to the semiconductor manufacturing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6443-6477, August.
    7. Yu, Dejian & Pan, Tianxing, 2021. "Tracing the main path of interdisciplinary research considering citation preference: A case from blockchain domain," Journal of Informetrics, Elsevier, vol. 15(2).
    8. Huang, Chen-Hao & Liu, John S. & Ho, Mei Hsiu-Ching & Chou, Tzu-Chuan, 2022. "Towards more convergent main paths: A relevance-based approach," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    10. Yu, Dejian & Sheng, Libo, 2021. "Influence difference main path analysis: Evidence from DNA and blockchain domain citation networks," Journal of Informetrics, Elsevier, vol. 15(4).
    11. Kuan, Chung-Huei & Chen, Dar-Zen & Huang, Mu-Hsuan, 2020. "The overlooked citations: Investigating the impact of ignoring citations to published patent applications," Journal of Informetrics, Elsevier, vol. 14(1).
    12. Kuan, Chung-Huei & Huang, Mu-Hsuan & Chen, Dar-Zen, 2018. "Missing links: Timing characteristics and their implications for capturing contemporaneous technological developments," Journal of Informetrics, Elsevier, vol. 12(1), pages 259-270.
    13. Alessandri, Enrico, 2023. "Identifying technological trajectories in the mining sector using patent citation networks," Resources Policy, Elsevier, vol. 80(C).
    14. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    15. Chen, Kaihua & Zhang, Yi & Fu, Xiaolan, 2019. "International research collaboration: An emerging domain of innovation studies?," Research Policy, Elsevier, vol. 48(1), pages 149-168.
    16. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
    17. Yan, Jianghui & Tseng, Fang-Mei & Lu, Louis Y.Y., 2018. "Developmental trajectories of new energy vehicle research in economic management: Main path analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 168-181.
    18. Chen, Liang & Xu, Shuo & Zhu, Lijun & Zhang, Jing & Xu, Haiyun & Yang, Guancan, 2022. "A semantic main path analysis method to identify multiple developmental trajectories," Journal of Informetrics, Elsevier, vol. 16(2).
    19. Nomaler, Onder & Verspagen, Bart, 2016. "River deep, mountain high: Of long-run knowledge trajectories within and between innovation clusters," MERIT Working Papers 2016-048, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    20. Vincent C. Ma & John S. Liu, 2016. "Exploring the research fronts and main paths of literature: a case study of shareholder activism research," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 33-52, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:117:y:2018:i:3:d:10.1007_s11192-018-2917-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.