Advanced Search
MyIDEAS: Login

Local Walsh-average regression for semiparametric varying-coefficient models

Contents:

Author Info

  • Shang, Suoping
  • Zou, Changliang
  • Wang, Zhaojun
Registered author(s):

    Abstract

    This work is concerned with robust estimation in a semiparametric varying-coefficient partially linear model when the underlying error distribution deviates from a normal distribution. We develop a robust estimator by minimizing a locally Walsh-average-based loss function. We show theoretically that the proposed estimator is highly efficient across a wide spectrum of distributions. Its asymptotic relative efficiency with respect to the least-squares-based method is closely related to that of the signed-rank Wilcoxon test in comparison with the t-test. Both the theoretical and the numerical results demonstrate that the performance of the new approach is at least comparable to those of existing works.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212002131
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Statistics & Probability Letters.

    Volume (Year): 82 (2012)
    Issue (Month): 10 ()
    Pages: 1815-1822

    as in new window
    Handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1815-1822

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=505573&ref=505573_01_ooc_1&version=01

    Related research

    Keywords: Asymptotic efficiency; Local linear regression; Robust nonparametric regression; Semiparametric composite quantile estimator; Walsh-average;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Local Walsh-average regression," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 36-48.
    2. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    3. Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69.
    4. Zhang, Wenyang & Lee, Sik-Yum & Song, Xinyuan, 2002. "Local Polynomial Fitting in Semivarying Coefficient Model," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 166-188, July.
    5. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    6. Wang, Lan & Kai, Bo & Li, Runze, 2009. "Local Rank Inference for Varying Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1631-1645.
    7. Zhang, Wenyang & Lee, Sik-Yum, 2000. "Variable Bandwidth Selection in Varying-Coefficient Models," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 116-134, July.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:10:p:1815-1822. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.