IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v71y2020ics0038012119301910.html
   My bibliography  Save this article

Analysis and short-term predictions of non-technical loss of electric power based on mixed effects models

Author

Listed:
  • Simões, Paulo Fernando Mahaz
  • Souza, Reinaldo Castro
  • Calili, Rodrigo Flora
  • Pessanha, José Francisco Moreira

Abstract

In this paper we estimate, analyze and predict short-term non-technical loss (NTL) of electric power of Brazilian energy service companies based on different assumptions for the covariance structure of the errors and controlling for socio-economic confounding variables. Although the correlation among repeated responses is not usually of intrinsic interest, it is an important aspect of the data that must properly be accounted for to produce valid inferences in longitudinal or panel data analysis. In the extended linear mixed effects model, the covariance matrix of the response vector is comprised by two subcomponents, a random effect component that can represent between group variation and a intraclass or within group component. So, in order to adequately treat the longitudinal character of NTL data, we use the decomposition of these variance components to evaluate different architectures to the within group errors. Using data of 59 Brazilian distributing utilities from 2004 to 2012, we fit a conditionally independent errors model and three other models with autoregressive-moving average parametrization to the intraclass disturbances. Finally, we compare models using the MAD and MAPE metrics in the prediction of NTL for the year of 2013. The findings suggest that the approach can be satisfactorily implemented in future statistical analysis of NTL.

Suggested Citation

  • Simões, Paulo Fernando Mahaz & Souza, Reinaldo Castro & Calili, Rodrigo Flora & Pessanha, José Francisco Moreira, 2020. "Analysis and short-term predictions of non-technical loss of electric power based on mixed effects models," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012119301910
    DOI: 10.1016/j.seps.2020.100804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012119301910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2020.100804?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leme, Rafael C. & Paiva, Anderson P. & Steele Santos, Paulo E. & Balestrassi, Pedro P. & Galvão, Leandro de Lima, 2014. "Design of experiments applied to environmental variables analysis in electricity utilities efficiency: The Brazilian case," Energy Economics, Elsevier, vol. 45(C), pages 111-119.
    2. Ahmad, Tanveer, 2017. "Non-technical loss analysis and prevention using smart meters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 573-589.
    3. Baltagi, Badi H. & Liu, Long, 2013. "Estimation and prediction in the random effects model with AR(p) remainder disturbances," International Journal of Forecasting, Elsevier, vol. 29(1), pages 100-107.
    4. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2017. "The changing of the relationships between carbon footprints and final demand: Panel data evidence for 40 major countries," Energy Economics, Elsevier, vol. 61(C), pages 8-20.
    5. Filippini, Massimo & Wetzel, Heike, 2014. "The impact of ownership unbundling on cost efficiency: Empirical evidence from the New Zealand electricity distribution sector," Energy Economics, Elsevier, vol. 45(C), pages 412-418.
    6. Filippini, M. & Greene, W. & Masiero, G., 2018. "Persistent and transient productive inefficiency in a regulated industry: electricity distribution," Energy Economics, Elsevier, vol. 69(C), pages 325-334.
    7. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    8. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    9. Maciejowska, Katarzyna & Nowotarski, Jakub & Weron, Rafał, 2016. "Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging," International Journal of Forecasting, Elsevier, vol. 32(3), pages 957-965.
    10. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    11. Charlton, Nathaniel & Singleton, Colin, 2014. "A refined parametric model for short term load forecasting," International Journal of Forecasting, Elsevier, vol. 30(2), pages 364-368.
    12. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    13. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    14. Frees, Edward W. & Miller, Thomas W., 2004. "Sales forecasting using longitudinal data models," International Journal of Forecasting, Elsevier, vol. 20(1), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Ivan Pavičić & Ninoslav Holjevac & Igor Ivanković & Dalibor Brnobić, 2021. "Model for 400 kV Transmission Line Power Loss Assessment Using the PMU Measurements," Energies, MDPI, vol. 14(17), pages 1-25, September.
    3. Daniel Leite & José Pessanha & Paulo Simões & Rodrigo Calili & Reinaldo Souza, 2020. "A Stochastic Frontier Model for Definition of Non-Technical Loss Targets," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Cardoso de Mendonça, Mário Jorge & Pereira, Amaro Olimpio & Medrano, Luis Alberto & Pessanha, José Francisco M., 2021. "Analysis of electric distribution utilities efficiency levels by stochastic frontier in Brazilian power sector," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Bai-Chen & Zhang, Zhen-Jiang & Anaya, Karim L., 2021. "Has the unbundling reform improved the service efficiency of China's power grid firms?," Energy Economics, Elsevier, vol. 95(C).
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
    4. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    5. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    6. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    7. Christopher Koch & Philipp Maskos, 2020. "Passive Balancing Through Intraday Trading: Whether Interactions Between Short-term Trading and Balancing Stabilize Germany s Electricity System," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 101-112.
    8. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    9. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    10. Florian Ziel, 2015. "Forecasting Electricity Spot Prices using Lasso: On Capturing the Autoregressive Intraday Structure," Papers 1509.01966, arXiv.org, revised Jan 2016.
    11. Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
    12. Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016. "Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 9(8), pages 1-22, August.
    13. Mohsin, Muhammad & Hanif, Imran & Taghizadeh-Hesary, Farhad & Abbas, Qaiser & Iqbal, Wasim, 2021. "Nexus between energy efficiency and electricity reforms: A DEA-Based way forward for clean power development," Energy Policy, Elsevier, vol. 149(C).
    14. Bartosz Uniejewski & Rafał Weron, 2018. "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models," Energies, MDPI, vol. 11(8), pages 1-26, August.
    15. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    16. Herrera, Rodrigo & González, Nicolás, 2014. "The modeling and forecasting of extreme events in electricity spot markets," International Journal of Forecasting, Elsevier, vol. 30(3), pages 477-490.
    17. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
    18. Shao, Zhen & Yang, ShanLin & Gao, Fei & Zhou, KaiLe & Lin, Peng, 2017. "A new electricity price prediction strategy using mutual information-based SVM-RFE classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 330-341.
    19. Just, Lisa & Wetzel, Heike, 2020. "Distributed Generation and Cost Efficiency of German Electricity Distribution Network Operators," EWI Working Papers 2020-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Deng, Na-Qian & Liu, Li-Qiu & Deng, Ying-Zhi, 2018. "Estimating the effects of restructuring on the technical and service-quality efficiency of electricity companies in China," Utilities Policy, Elsevier, vol. 50(C), pages 91-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:71:y:2020:i:c:s0038012119301910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.