IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v69y2020icp839-859.html
   My bibliography  Save this article

CBOE VIX and Jump-GARCH option pricing models

Author

Listed:
  • Yoo, Eun Gyu
  • Yoon, Sun-Joong

Abstract

We simulate the VIXs implied in GARCH option pricing models incorporating the variance and jump premiums. By estimating the parameters through a joint estimation as well as a risk-neutral estimation, we compare the implied VIXs with the CBOE VIX in terms of their error size and unbiasedness. Our empirical results show that the model incorporating both premiums can generate the implied VIX that is more consistent with the CBOE VIX: The errors of the model with both premiums are smaller than those of the other models, and the biasedness towards the CBOE VIX is also moderated. However, there is still a limit to explain the dynamics of the CBOE VIX and VIX options sufficiently even in the most flexible model. This finding is consistent with that of Bardgett et al. (2019) who show that S&P 500 and VIX derivatives contain conflicting information on variance. For robustness, we conduct an out-of-sample analysis by updating the estimation period and the evaluation period year-by-year, which also supports the result of an in-sample analysis.

Suggested Citation

  • Yoo, Eun Gyu & Yoon, Sun-Joong, 2020. "CBOE VIX and Jump-GARCH option pricing models," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 839-859.
  • Handle: RePEc:eee:reveco:v:69:y:2020:i:c:p:839-859
    DOI: 10.1016/j.iref.2020.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056020301398
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2020.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Jeff Fleming & Barbara Ostdiek & Robert E. Whaley, 1995. "Predicting stock market volatility: A new measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(3), pages 265-302, May.
    3. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    4. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    5. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    6. Fousseni Chabi-Yo & René Garcia & Eric Renault, 2008. "State Dependence Can Explain the Risk Aversion Puzzle," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 973-1011, April.
    7. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    8. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    9. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    10. Jinji Hao & Jin E. Zhang, 2013. "GARCH Option Pricing Models, the CBOE VIX, and Variance Risk Premium," Journal of Financial Econometrics, Oxford University Press, vol. 11(3), pages 556-580, June.
    11. Yueh‐Neng Lin, 2007. "Pricing VIX futures: Evidence from integrated physical and risk‐neutral probability measures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(12), pages 1175-1217, December.
    12. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    13. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    14. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    15. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    16. Fousseni Chabi-Yo, 2012. "Pricing Kernels with Stochastic Skewness and Volatility Risk," Management Science, INFORMS, vol. 58(3), pages 624-640, March.
    17. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
    18. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    20. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    21. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    22. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
    23. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    24. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    25. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    26. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    27. Dimitris Psychoyios & George Skiadopoulos, 2006. "Volatility options: Hedging effectiveness, pricing, and model error," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(1), pages 1-31, January.
    28. Chernov, Mikhail, 2003. "Empirical reverse engineering of the pricing kernel," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 329-364.
    29. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    30. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    31. Fabrizio Ferriani & Sergio Pastorello, 2012. "Estimating and testing non‐affine option pricing models with a large unbalanced panel of options," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 171-203, June.
    32. Garland B. Durham, 2013. "Risk-neutral Modeling with Affine and Nonaffine Models," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 650-681, September.
    33. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    34. Wagner, Niklas & Szimayer, Alexander, 2004. "Local and spillover shocks in implied market volatility: evidence for the U.S. and Germany," Research in International Business and Finance, Elsevier, vol. 18(3), pages 237-251, September.
    35. Charles J. Corrado & Thomas W. Miller, Jr., 2005. "The forecast quality of CBOE implied volatility indexes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 339-373, April.
    36. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    37. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    38. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    39. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    40. Zhiguang Wang & Robert T. Daigler, 2011. "The performance of VIX option pricing models: Empirical evidence beyond simulation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 251-281, March.
    41. Zhongjin Lu & Yingzi Zhu, 2010. "Volatility components: The term structure dynamics of VIX futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(3), pages 230-256, March.
    42. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xinyu & Zhao, An & Liu, Li, 2023. "Forecasting VIX using two-component realized EGARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    2. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    3. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    4. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    5. Peter Reinhard Hansen & Zhuo Huang & Chen Tong & Tianyi Wang, 2021. "Realized GARCH, CBOE VIX, and the Volatility Risk Premium," Papers 2112.05302, arXiv.org.
    6. Markellos, Raphael N. & Psychoyios, Dimitris, 2018. "Interest rate volatility and risk management: Evidence from CBOE Treasury options," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 190-202.
    7. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    8. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    9. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).
    10. Simon Lalancette & Jean†Guy Simonato, 2017. "The Role of the Conditional Skewness and Kurtosis in VIX Index Valuation," European Financial Management, European Financial Management Association, vol. 23(2), pages 325-354, March.
    11. Song, Zhaogang & Xiu, Dacheng, 2016. "A tale of two option markets: Pricing kernels and volatility risk," Journal of Econometrics, Elsevier, vol. 190(1), pages 176-196.
    12. Stylianos Perrakis, 2022. "From innovation to obfuscation: continuous time finance fifty years later," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(3), pages 369-401, September.
    13. Steven Heston & Kris Jacobs & Hyung Joo Kim, 2023. "The Pricing Kernel in Options," Finance and Economics Discussion Series 2023-053, Board of Governors of the Federal Reserve System (U.S.).
    14. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    15. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    16. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    19. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.
    20. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.

    More about this item

    Keywords

    Variance premium; Jumps; CBOE VIX; GARCH option Pricing models;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:69:y:2020:i:c:p:839-859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.