IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v44y2015i3p610-622.html
   My bibliography  Save this article

Organizational design of University laboratories: Task allocation and lab performance in Japanese bioscience laboratories

Author

Listed:
  • Shibayama, Sotaro
  • Baba, Yasunori
  • Walsh, John P.

Abstract

A university laboratory is a fundamental unit of scientific production, but optimizing its organizational design is a formidable task for lab heads, who play potentially conflicting roles of manager, educator, and researcher. Drawing on cross-sectional data from a questionnaire survey and bibliometric data on Japanese biology professors, this study investigates task allocation inside laboratories. Results show a general pattern that lab heads play managerial roles and members (e.g., students) are engaged in labor-intensive tasks (e.g., experiment), while revealing a substantial variation among laboratories. Further examining how this variation is related to lab-level scientific productivity, this study finds that productive task allocation differs by context. In particular, results suggest that significant task overlap across status hierarchies is more productive for basic research, and that rigidly separated task allocation is more productive in applied research. However, optimal task allocation, with regard to scientific productivity, might conflict with other goals of academic organizations, particularly training of future scientists. The paper concludes with a discussion of the policy implications of these findings.

Suggested Citation

  • Shibayama, Sotaro & Baba, Yasunori & Walsh, John P., 2015. "Organizational design of University laboratories: Task allocation and lab performance in Japanese bioscience laboratories," Research Policy, Elsevier, vol. 44(3), pages 610-622.
  • Handle: RePEc:eee:respol:v:44:y:2015:i:3:p:610-622
    DOI: 10.1016/j.respol.2014.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733314002212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2014.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    2. Carayol, Nicolas & Matt, Mireille, 2006. "Individual and collective determinants of academic scientists' productivity," Information Economics and Policy, Elsevier, vol. 18(1), pages 55-72, March.
    3. Henry Sauermann & Wesley M. Cohen, 2010. "What Makes Them Tick? Employee Motives and Firm Innovation," Management Science, INFORMS, vol. 56(12), pages 2134-2153, December.
    4. Henry Sauermann & Paula Stephan, 2013. "Conflicting Logics? A Multidimensional View of Industrial and Academic Science," Organization Science, INFORMS, vol. 24(3), pages 889-909, June.
    5. Etzkowitz, Henry & Leydesdorff, Loet, 2000. "The dynamics of innovation: from National Systems and "Mode 2" to a Triple Helix of university-industry-government relations," Research Policy, Elsevier, vol. 29(2), pages 109-123, February.
    6. Sotaro Shibayama, 2011. "Distribution of academic research funds: a case of Japanese national research grant," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 43-60, July.
    7. Heinze, Thomas & Shapira, Philip & Rogers, Juan D. & Senker, Jacqueline M., 2009. "Organizational and institutional influences on creativity in scientific research," Research Policy, Elsevier, vol. 38(4), pages 610-623, May.
    8. Roach, Michael & Sauermann, Henry, 2010. "A taste for science? PhD scientists' academic orientation and self-selection into research careers in industry," Research Policy, Elsevier, vol. 39(3), pages 422-434, April.
    9. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67, pages 297-297.
    10. Nightingale, Paul, 1998. "A cognitive model of innovation," Research Policy, Elsevier, vol. 27(7), pages 689-709, November.
    11. Francis Narin & Gabriel Pinski & Helen Hofer Gee, 1976. "Structure of the Biomedical Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(1), pages 25-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Dias & Beatriz Selan, 2023. "How does university-industry collaboration relate to research resources and technical-scientific activities? An analysis at the laboratory level," The Journal of Technology Transfer, Springer, vol. 48(1), pages 392-415, February.
    2. Yaqub, Ohid & Coburn, Josie & Moore, Duncan A.Q., 2023. "Knowledge spillovers from HIV research-funding," SocArXiv gcuhn, Center for Open Science.
    3. Sotaro Shibayama & Yoshie Kobayashi, 2017. "Impact of Ph.D. training: a comprehensive analysis based on a Japanese national doctoral survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 387-415, October.
    4. Alessandro Muscio & Sotaro Shibayama & Laura Ramaciotti, 2022. "Universities and start-up creation by Ph.D. graduates: the role of scientific and social capital of academic laboratories," The Journal of Technology Transfer, Springer, vol. 47(1), pages 147-175, February.
    5. Haeussler, Carolin & Sauermann, Henry, 2020. "Division of labor in collaborative knowledge production: The role of team size and interdisciplinarity," Research Policy, Elsevier, vol. 49(6).
    6. Geuna, Aldo & Shibayama, Sotaro, 2015. "Moving Out Of Academic Research: Why Scientists Stop Doing Research?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201501, University of Turin.
    7. Walsh, John P. & Lee, You-Na, 2015. "The bureaucratization of science," Research Policy, Elsevier, vol. 44(8), pages 1584-1600.
    8. Carolin Haeussler & Henry Sauermann, 2016. "The Division of Labor in Teams: A Conceptual Framework and Application to Collaborations in Science," NBER Working Papers 22241, National Bureau of Economic Research, Inc.
    9. Good, Matthew & Knockaert, Mirjam & Soppe, Birthe & Wright, Mike, 2019. "The technology transfer ecosystem in academia. An organizational design perspective," Technovation, Elsevier, vol. 82, pages 35-50.
    10. Noriyuki Morichika & Sotaro Shibayama, 2016. "Use of dissertation data in science policy research," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 221-241, July.
    11. Walsh, John P. & Lee, You-Na & Tang, Li, 2019. "Pathogenic organization in science: Division of labor and retractions," Research Policy, Elsevier, vol. 48(2), pages 444-461.
    12. Qinwei Cao & Peng Xie & Meng Jiao & Wanchun Duan, 2021. "The larger scientific and technological human scale, the better innovation effect? Evidence from key universities in China," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5623-5649, July.
    13. Corsini, Alberto & Pezzoni, Michele & Visentin, Fabiana, 2022. "What makes a productive Ph.D. student?," Research Policy, Elsevier, vol. 51(10).
    14. Liyin Zhang & Yuchen Qian & Chao Ma & Jiang Li, 2023. "Continued collaboration shortens the transition period of scientists who move to another institution," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1765-1784, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    2. Gans, Joshua S. & Murray, Fiona E. & Stern, Scott, 2017. "Contracting over the disclosure of scientific knowledge: Intellectual property and academic publication," Research Policy, Elsevier, vol. 46(4), pages 820-835.
    3. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    4. Kyle Myers & Wei Yang Tham, 2023. "Money, Time, and Grant Design," Papers 2312.06479, arXiv.org.
    5. Henry Sauermann & Paula Stephan, 2013. "Conflicting Logics? A Multidimensional View of Industrial and Academic Science," Organization Science, INFORMS, vol. 24(3), pages 889-909, June.
    6. Sam Arts & Reinhilde Veugelers, 2020. "Taste for science, academic boundary spanning, and inventive performance of scientists and engineers in industry [Industry or academia, basic or applied? Career choices and earnings trajectories of," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(4), pages 917-933.
    7. Henry Sauermann, 2017. "Fire in the Belly? Employee Motives and Innovative Performance in Startups versus Established Firms," NBER Working Papers 23099, National Bureau of Economic Research, Inc.
    8. Margit Osterloh & Bruno S. Frey, 2010. "Academic rankings and research governance," IEW - Working Papers 482, Institute for Empirical Research in Economics - University of Zurich.
    9. Buenstorf Guido & Geissler Matthias, 2014. "Like Doktorvater, like Son? Tracing Role Model Learning in the Evolution of German Laser Research," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(2-3), pages 158-184, April.
    10. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    11. Margit Osterloh & Bruno S. Frey, 2009. "Research Governance in Academia: Are there Alternatives to Academic Rankings?," CREMA Working Paper Series 2009-17, Center for Research in Economics, Management and the Arts (CREMA).
    12. Maria Rosaria Carillo & Erasmo Papagni & Fabian Capitanio, 2008. "Effects of social interactions on scientists' productivity," International Journal of Manpower, Emerald Group Publishing Limited, vol. 29(3), pages 263-279, June.
    13. Rossi, Federica, 2002. "An introductory overview of innovation studies," MPRA Paper 9106, University Library of Munich, Germany, revised Jun 2008.
    14. Franzoni, Chiara & Sauermann, Henry, 2014. "Crowd science: The organization of scientific research in open collaborative projects," Research Policy, Elsevier, vol. 43(1), pages 1-20.
    15. Wang, Jian & Lee, You-Na & Walsh, John P., 2018. "Funding model and creativity in science: Competitive versus block funding and status contingency effects," Research Policy, Elsevier, vol. 47(6), pages 1070-1083.
    16. Wesley M. Cohen & Henry Sauermann & Paula Stephan, 2020. "Not in the Job Description: The Commercial Activities of Academic Scientists and Engineers," Management Science, INFORMS, vol. 66(9), pages 4108-4117, September.
    17. Liu, Christopher C. & Stuart, Toby, 2014. "Positions and rewards: The allocation of resources within a science-based entrepreneurial firm," Research Policy, Elsevier, vol. 43(7), pages 1134-1143.
    18. Benjamin Balsmeier & Maikel Pellens, 2016. "How much does it cost to be a scientist?," The Journal of Technology Transfer, Springer, vol. 41(3), pages 469-505, June.
    19. Robert Lowe & Claudia Gonzalez-Brambila, 2007. "Faculty Entrepreneurs and Research Productivity," The Journal of Technology Transfer, Springer, vol. 32(3), pages 173-194, June.
    20. Squazzoni, Flaminio & Bravo, Giangiacomo & Takács, Károly, 2013. "Does incentive provision increase the quality of peer review? An experimental study," Research Policy, Elsevier, vol. 42(1), pages 287-294.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:44:y:2015:i:3:p:610-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.