IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v98y2018icp27-39.html
   My bibliography  Save this article

Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications

Author

Listed:
  • Sahoo, Kamalakanta
  • Bilek, E.M. (Ted)
  • Mani, Sudhagar

Abstract

Storage is the critical operation within the biomass supply chain to reduce feedstock supply risks and to manage smooth year-around operations of a biorefinery or a bioenergy plant. This paper analyzed the economic and environmental impacts of four different biomass storage systems for woodchips (Outdoor-open, Outdoor-tarped, Indoor, and Silo) and two systems for pellets (Indoor and Silo). Storage cost includes the costs for handling (including ventilation in case of silo storage), infrastructure investment, and dry matter loss (DML) for each system. The estimation of total greenhouse gas (GHG) emissions includes the fugitive emissions from storage piles and emissions due to electricity and fuel consumption for each system. Among four storage systems, the outdoor-tarped ($15.0 ODMT−1, ODMT: Oven Dry Metric Ton) and silo ($5.8 ODMT−1) storage were the least-cost options for woodchips and pellets respectively. However, silo-storage could be the most promising option for storing woodchips ($5.8 ODMT−1) and pellets ($2.3 ODMT−1), if it is used for short-term (two months) and frequently (at least six times) in a year. The total GHG emissions for six-month storage were 2.8–11.8 kgCO2e ODMT−1 for woodchips and 8.6–42.0 kgCO2e ODMT−1 for pellets. During Outdoor-open storage, the lower heating value of woodchips could drop to 37% due to increased dry-matter loss (DML) and moisture content. The initial moisture content, bulk density, DML, and resource required during handling were the most sensitive parameters influenced the storage performances of both woodchips and pellets. This study has demonstrated that a combination of different storage options along the supply chain could reduce the total biomass storage cost for a biorefinery or power plant.

Suggested Citation

  • Sahoo, Kamalakanta & Bilek, E.M. (Ted) & Mani, Sudhagar, 2018. "Techno-economic and environmental assessments of storing woodchips and pellets for bioenergy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 27-39.
  • Handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:27-39
    DOI: 10.1016/j.rser.2018.08.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larsson, Sylvia H. & Lestander, Torbjörn A. & Crompton, Dave & Melin, Staffan & Sokhansanj, Shahab, 2012. "Temperature patterns in large scale wood pellet silo storage," Applied Energy, Elsevier, vol. 92(C), pages 322-327.
    2. Alakoski, Esa & Jämsén, Miia & Agar, David & Tampio, Elina & Wihersaari, Margareta, 2016. "From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 376-383.
    3. Jaya Shankar Tumuluru & C. Jim Lim & Xiaotao T. Bi & Xingya Kuang & Staffan Melin & Fahimeh Yazdanpanah & Shahab Sokhansanj, 2015. "Analysis on Storage Off-Gas Emissions from Woody, Herbaceous, and Torrefied Biomass," Energies, MDPI, vol. 8(3), pages 1-15, March.
    4. Kühmaier, Martin & Erber, Gernot & Kanzian, Christian & Holzleitner, Franz & Stampfer, Karl, 2016. "Comparison of costs of different terminal layouts for fuel wood storage," Renewable Energy, Elsevier, vol. 87(P1), pages 544-551.
    5. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    6. Edwards, William M. & Hofstrand, Donald, 2011. "Computing a Grain Storage Rental Rate," Staff General Research Papers Archive 34464, Iowa State University, Department of Economics.
    7. Zhang, Fengli & Johnson, Dana M. & Johnson, Mark A., 2012. "Development of a simulation model of biomass supply chain for biofuel production," Renewable Energy, Elsevier, vol. 44(C), pages 380-391.
    8. Jämsén, M. & Agar, D. & Alakoski, E. & Tampio, E. & Wihersaari, M., 2015. "Measurement methodology for greenhouse gas emissions from storage of forest chips–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1617-1623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Dyjakon & Tomasz Noszczyk, 2019. "The Influence of Freezing Temperature Storage on the Mechanical Durability of Commercial Pellets from Biomass," Energies, MDPI, vol. 12(13), pages 1-13, July.
    2. Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
    3. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.
    4. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).
    5. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    6. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Kenji Koido & Eri Takata & Takashi Yanagida & Hirofumi Kuboyama, 2022. "Techno-Economic Assessment of Heat Supply Systems in Woodchip Drying Bases for Wood Gasification Combined Heat and Power," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    10. Lenka Štofová & Petra Szaryszová & Bohuslava Mihalčová, 2021. "Testing the Bioeconomic Options of Transitioning to Solid Recovered Fuel: A Case Study of a Thermal Power Plant in Slovakia," Energies, MDPI, vol. 14(6), pages 1-20, March.
    11. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    2. José Ignacio Arranz & María Teresa Miranda & Irene Montero & Sergio Nogales & Francisco José Sepúlveda, 2019. "Influence Factors on Carbon Monoxide Accumulation in Biomass Pellet Storage," Energies, MDPI, vol. 12(12), pages 1-12, June.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    6. Everard, Colm D. & Finnan, John & McDonnell, Kevin P. & Schmidt, Martin, 2013. "Evaluation of self-heating in Miscanthus x giganteus energy crop clamps and the implications for harvesting time," Energy, Elsevier, vol. 58(C), pages 350-356.
    7. Hamid Rezaei & Fahimeh Yazdan Panah & C. Jim Lim & Shahab Sokhansanj, 2020. "Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    8. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    9. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    10. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    11. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    12. Jiayu Wei & Can Yao & Changdong Sheng, 2023. "Modelling Self-Heating and Self-Ignition Processes during Biomass Storage," Energies, MDPI, vol. 16(10), pages 1-17, May.
    13. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    14. Patrizia Busato & Alessandro Sopegno & Remigio Berruto & Dionysis Bochtis & Angela Calvo, 2017. "A Web-Based Tool for Energy Balance Estimation in Multiple-Crops Production Systems," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    15. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    16. Biswas, Amit Kumar & Rudolfsson, Magnus & Broström, Markus & Umeki, Kentaro, 2014. "Effect of pelletizing conditions on combustion behaviour of single wood pellet," Applied Energy, Elsevier, vol. 119(C), pages 79-84.
    17. Nugroho, Yohanes Kristianto & Zhu, Liandong, 2019. "Platforms planning and process optimization for biofuels supply chain," Renewable Energy, Elsevier, vol. 140(C), pages 563-579.
    18. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    19. Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
    20. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:98:y:2018:i:c:p:27-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.