IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v88y2018icp373-379.html
   My bibliography  Save this article

Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil)

Author

Listed:
  • Miranda, Amanda Carvalho
  • da Silva Filho, Silvério Catureba
  • Tambourgi, Elias Basile
  • CurveloSantana, José Carlos
  • Vanalle, Rosangela Maria
  • Guerhardt, Flávio

Abstract

The Brazilian Petroleum Regulatory Agency (ANP) regulates the use of biodiesel in fuel oil throughout Brazil. Current laws require that from 2017, diesel oil must contain 8% biodiesel (i.e., B8). In fact, the bus fleets of some Brazilian regions already use the B20 blend (20% biodiesel) as fuel. The objective of this work was to analyse the costs and logistics of biodiesel production from mixtures of used cooking oils in the Metropolitan Region of Campinas (RMC, São Paulo State, Brazil). Cooking oils collected from MRC homes were mixed with ethanol in various proportions and transesterified at 60 °C for 30 or 90 min, in order to obtain biodiesel, using NaOH as a catalyst. The results of the physical and chemical analyses demonstrated that the biodiesels so obtained possessed characteristics close to those required by Brazilian standards. This fuel could be used in fleets of buses, trucks and machines, or even sold to fuel distributors; and would be worth 15.784 million USD/year. Thus, MRC would gain environmental credits and become a sustainable city. As part of a logistical planning proposal to collect used cooking oils during household garbage collection in MRC, an idea was presented for a reservoir attached to garbage trucks. Two or more companies might work together to create a competitive advantage and higher profits than could be achieved by unitary action. The biodiesel industrial plant must be placed in Barão Geraldo District, which is near a petroleum refinery in Paulínia as well as highways of national importance and pharmaceutical industries. The reduction of more than 20% in all emissions of greenhouse gases and particulate matter has been proven since implementation of the current policy requiring the use of biodiesel in the region's bus fleet.

Suggested Citation

  • Miranda, Amanda Carvalho & da Silva Filho, Silvério Catureba & Tambourgi, Elias Basile & CurveloSantana, José Carlos & Vanalle, Rosangela Maria & Guerhardt, Flávio, 2018. "Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 373-379.
  • Handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:373-379
    DOI: 10.1016/j.rser.2018.02.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211830056X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    2. Rajagopal, D. & Plevin, R. & Hochman, G. & Zilberman, D., 2015. "Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards," Energy Economics, Elsevier, vol. 49(C), pages 359-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
    2. Geraldo Cardoso de Oliveira Neto & Luiz Eduardo Carvalho Chaves & Luiz Fernando Rodrigues Pinto & José Carlos Curvelo Santana & Marlene Paula Castro Amorim & Mário Jorge Ferreira Rodrigues, 2019. "Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    3. Flavio Guerhardt & Thadeu Alfredo Farias Silva & Felix Martin Carbajal Gamarra & Silvestre Eduardo Rocha Ribeiro Júnior & Segundo Alberto Vásquez Llanos & Ada Patricia Barturén Quispe & Milton Vieira , 2020. "A Smart Grid System for Reducing Energy Consumption and Energy Cost in Buildings in São Paulo, Brazil," Energies, MDPI, vol. 13(15), pages 1-22, July.
    4. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Rodrigues, Caroline Varella & Rios Alcaraz, Francisco Abraham & Nespeca, Maurílio Gustavo & Rodrigues, Aline Varella & Motteran, Fabrício & Tallarico Adorno, Maria Angela & Varesche, Maria Bernadete A, 2020. "Biohydrogen production in an integrated biosystem using crude glycerol from waste cooking oils," Renewable Energy, Elsevier, vol. 162(C), pages 701-711.
    6. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    7. Tamás Mizik & Gábor Gyarmati, 2021. "Economic and Sustainability of Biodiesel Production—A Systematic Literature Review," Clean Technol., MDPI, vol. 3(1), pages 1-18, January.
    8. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
    9. Tran, Nghiep Nam & Tišma, Marina & Budžaki, Sandra & McMurchie, Edward J. & Gonzalez, Olivia Maria Morales & Hessel, Volker & Ngothai, Yung, 2018. "Scale-up and economic analysis of biodiesel production from recycled grease trap waste," Applied Energy, Elsevier, vol. 229(C), pages 142-150.
    10. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Luane Souza & Charles Lincoln Kenji Yamamura & Diego de Freitas Coelho & Elias Basile Tambourgi & Fernando Tobal Berssaneti & Linda Lee Ho, 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    11. José Carlos Curvelo Santana & Amanda Carvalho Miranda & Charles Lincoln Kenji Yamamura & Silvério Catureba da Silva Filho & Elias Basile Tambourgi & Linda Lee Ho & Fernando Tobal Berssaneti, 2020. "Effects of Air Pollution on Human Health and Costs: Current Situation in São Paulo, Brazil," Sustainability, MDPI, vol. 12(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    3. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    4. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    5. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    6. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    7. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    8. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    9. Mostafaei, Mostafa & Javadikia, Hossein & Naderloo, Leila, 2016. "Modeling the effects of ultrasound power and reactor dimension on the biodiesel production yield: Comparison of prediction abilities between response surface methodology (RSM) and adaptive neuro-fuzzy," Energy, Elsevier, vol. 115(P1), pages 626-636.
    10. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    11. Giovanni De Feo & Aurelio Di Domenico & Carmen Ferrara & Salvatore Abate & Libero Sesti Osseo, 2020. "Evolution of Waste Cooking Oil Collection in an Area with Long-Standing Waste Management Problems," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    12. Abu-Ghazala, Abdelmoniem H. & Abdelhady, Hosam H. & Mazhar, Amina A. & El-Deab, Mohamed S., 2022. "Valorization of hazard waste: Efficient utilization of white brick waste powder in the catalytic production of biodiesel from waste cooking oil via RSM optimization process," Renewable Energy, Elsevier, vol. 200(C), pages 1120-1133.
    13. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    14. Aghbashlo, Mortaza & Tabatabaei, Meisam & Amid, Sama & Hosseinzadeh-Bandbafha, Homa & Khoshnevisan, Benyamin & Kianian, Ghaem, 2020. "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 1352-1364.
    15. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    16. Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Kalogirou, Soteris A. & Gupta, Vijai Kumar & Park, Young-Kwon & Fallahi, Alireza & Sulaiman, Alawi & Ranjbari, Meisam & Rahnama, Hassan & Aghbashl, 2022. "Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt, 2017. "The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission," Energy, Elsevier, vol. 141(C), pages 2045-2053.
    18. Wen-Tien Tsai, 2019. "Mandatory Recycling of Waste Cooking Oil from Residential and Commercial Sectors in Taiwan," Resources, MDPI, vol. 8(1), pages 1-11, February.
    19. Sumitkumar Joshi & Pradipkumar Hadiya & Manan Shah & Anirbid Sircar, 2019. "Techno-economical and Experimental Analysis of Biodiesel Production from Used Cooking Oil," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-6, March.
    20. Bari, S. & Saad, Idris, 2014. "Effect of guide vane height on the performance and emissions of a compression ignition (CI) engine run with biodiesel through simulation and experiment," Applied Energy, Elsevier, vol. 136(C), pages 431-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:373-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.