IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp802-814.html
   My bibliography  Save this article

Reliability and performance of direct-expansion ground-coupled heat pump systems: Issues and possible solutions

Author

Listed:
  • Ndiaye, Demba

Abstract

The literature on Direct-expansion ground-coupled heat pumps (DX-GCHP) is reviewed. Despite being potentially the most efficient vapor compression-based air conditioning system, DX-GCHPs are not very popular due to the numerous operational and design issues they are faced with: shortage of field studies, oil return to the compressor, expansion valve hunting, refrigerant flow mal-distribution in parallel loops, high pressure drops and gains in the ground heat exchanger, variable speed operation of the compressor, lack of reliable numerical models of the ground heat exchanger and of the whole system, and lack of generalized design guidelines. This paper addresses these issues and discusses possible solutions to them.

Suggested Citation

  • Ndiaye, Demba, 2016. "Reliability and performance of direct-expansion ground-coupled heat pump systems: Issues and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 802-814.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:802-814
    DOI: 10.1016/j.rser.2016.08.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.08.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    2. Goulburn, J.R. & Fearon, J., 1983. "Domestic heat pump with deep hole ground source evaporator," Applied Energy, Elsevier, vol. 14(2), pages 99-113.
    3. Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine, 2014. "Modeling of a two-phase CO2-filled vertical borehole for geothermal heat pump applications," Applied Energy, Elsevier, vol. 114(C), pages 611-620.
    4. Goulburn, J.R. & Fearon, J., 1978. "Deep ground coil evaporators for heat pumps," Applied Energy, Elsevier, vol. 4(4), pages 293-313, October.
    5. Yang, Wei, 2013. "Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China," Energy, Elsevier, vol. 59(C), pages 334-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, A. & Elsami-Nejad, P., 2019. "A transient coupled model of a variable speed transcritical CO2 direct expansion ground source heat pump for space heating and cooling," Renewable Energy, Elsevier, vol. 140(C), pages 1012-1021.
    2. Jacek Kropiwnicki & Mariusz Furmanek & Andrzej Rogala, 2021. "Modular Approach for Modelling Warming up Process in Water Installations with Flow-Regulating Elements," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    4. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parham Eslami-Nejad & Messaoud Badache & Arash Bastani & Zine Aidoun, 2018. "Detailed Theoretical Characterization of a Transcritical CO 2 Direct Expansion Ground Source Heat Pump Water Heater," Energies, MDPI, vol. 11(2), pages 1-16, February.
    2. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    3. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    4. Eslami-Nejad, Parham & Ouzzane, Mohamed & Aidoun, Zine, 2014. "Modeling of a two-phase CO2-filled vertical borehole for geothermal heat pump applications," Applied Energy, Elsevier, vol. 114(C), pages 611-620.
    5. Nguyen, A. & Elsami-Nejad, P., 2019. "A transient coupled model of a variable speed transcritical CO2 direct expansion ground source heat pump for space heating and cooling," Renewable Energy, Elsevier, vol. 140(C), pages 1012-1021.
    6. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    7. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    8. Kavian, Soheil & Hakkaki-Fard, Ali & Jafari Mosleh, Hassan, 2020. "Energy performance and economic feasibility of hot spring-based district heating system – A case study," Energy, Elsevier, vol. 211(C).
    9. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    10. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    11. Zhenying Zhang & Jiaqi Wang & Meiyuan Yang & Kai Gong & Mei Yang, 2022. "Environmental and Economic Analysis of Heating Solutions for Rural Residences in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    12. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    13. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    14. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    15. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    16. Won-Suk Yang & Young Il Kim, 2022. "Cooling Performance Enhancement of a 20 RT (70 kW) Two-Evaporator Heat Pump with a Vapor–Liquid Separator," Energies, MDPI, vol. 15(11), pages 1-18, May.
    17. Cimmino, Massimo, 2016. "Fluid and borehole wall temperature profiles in vertical geothermal boreholes with multiple U-tubes," Renewable Energy, Elsevier, vol. 96(PA), pages 137-147.
    18. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    19. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    20. Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:802-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.