IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp745-759.html
   My bibliography  Save this article

Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires

Author

Listed:
  • Hita, Idoia
  • Arabiourrutia, Miriam
  • Olazar, Martin
  • Bilbao, Javier
  • Arandes, José María
  • Castaño, Pedro

Abstract

The 7·106t of waste tires that are generated yearly represent for a potential source of fuels considering its composition, rich in C and H, and its chemical features. Waste tires can be recycled through several processes aiming for either material, energy, or chemical product recovery. In this work we review the current status of these valorization pathways, with a particular focus on pyrolysis, its main products and their characteristics. Despite the extended reviews on the pyrolysis of tires, scarce material is available regarding the possibilities that scrap tires pyrolysis oil (STPO) offers and its limitations. STPO is both the most economically and energetically attractive product, and its composition (as obtained by different authors) is analyzed in this work, finding that the main barriers to solve for its direct implementation are (i) high sulfur content, (ii) high content of aromatics and (iii) high proportion of heavy molecules (>350°C). From an industrial perspective, a sequential 2-stage hydrotreating–hydrocracking strategy has been proposed for STPO upgrading in order to simultaneously overcoming all these limitations and produce high quality fuels.

Suggested Citation

  • Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:745-759
    DOI: 10.1016/j.rser.2015.11.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115013489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lebreton, Baptiste & Tuma, Axel, 2006. "A quantitative approach to assessing the profitability of car and truck tire remanufacturing," International Journal of Production Economics, Elsevier, vol. 104(2), pages 639-652, December.
    2. Martínez, Juan Daniel & Ramos, Ángel & Armas, Octavio & Murillo, Ramón & García, Tomás, 2014. "Potential for using a tire pyrolysis liquid-diesel fuel blend in a light duty engine under transient operation," Applied Energy, Elsevier, vol. 130(C), pages 437-446.
    3. Sharma, V. K. & Fortuna, F. & Mincarini, M. & Berillo, M. & Cornacchia, G., 2000. "Disposal of waste tyres for energy recovery and safe environment," Applied Energy, Elsevier, vol. 65(1-4), pages 381-394, April.
    4. Murphy, J.D. & McKeogh, E., 2004. "Technical, economic and environmental analysis of energy production from municipal solid waste," Renewable Energy, Elsevier, vol. 29(7), pages 1043-1057.
    5. Lam, Su Shiung & Liew, Rock Keey & Jusoh, Ahmad & Chong, Cheng Tung & Ani, Farid Nasir & Chase, Howard A., 2016. "Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 741-753.
    6. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    7. Dai, Xianwen & Yin, Xiuli & Wu, Chuangzhi & Zhang, Wennan & Chen, Yong, 2001. "Pyrolysis of waste tires in a circulating fluidized-bed reactor," Energy, Elsevier, vol. 26(4), pages 385-399.
    8. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    9. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    10. Antoniou, N. & Zabaniotou, A., 2013. "Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 539-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geraldo Cardoso de Oliveira Neto & Luiz Eduardo Carvalho Chaves & Luiz Fernando Rodrigues Pinto & José Carlos Curvelo Santana & Marlene Paula Castro Amorim & Mário Jorge Ferreira Rodrigues, 2019. "Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    2. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    3. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    4. Zhu, Hongmei & He, Donglin & Duan, Hao & Yin, Hong & Chen, Yafei & Chao, Xing & Zhang, Xianming & Gong, Haifeng, 2023. "Study on coupled combustion behaviors and kinetics of plastic pyrolysis by-product for oil," Energy, Elsevier, vol. 262(PA).
    5. Jiří Bojanovský & Vítězslav Máša & Igor Hudák & Pavel Skryja & Josef Hopjan, 2022. "Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives," Sustainability, MDPI, vol. 14(21), pages 1-34, October.
    6. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. Li, Dan & Lei, Shijun & Lin, Fawei & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2020. "Study of scrap tires pyrolysis – Products distribution and mechanism," Energy, Elsevier, vol. 213(C).
    8. Ma, Chuan & Yu, Jie & Wang, Ben & Song, Zijian & Xiang, Jun & Hu, Song & Su, Sheng & Sun, Lushi, 2016. "Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 433-450.
    9. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    11. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    12. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    13. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    14. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    15. Doja, Somi & Pillari, Lava Kumar & Bichler, Lukas, 2022. "Processing and activation of tire-derived char: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    17. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    3. Antoniou, N. & Stavropoulos, G. & Zabaniotou, A., 2014. "Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1053-1073.
    4. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content," Applied Energy, Elsevier, vol. 170(C), pages 140-147.
    5. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    7. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    9. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    10. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    11. Eunhye Song & Daegi Kim & Cheol-Jin Jeong & Do-Yong Kim, 2019. "A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis," Energies, MDPI, vol. 12(5), pages 1-10, March.
    12. Vuk Petronijević & Aleksandar Đorđević & Miladin Stefanović & Slavko Arsovski & Zdravko Krivokapić & Milan Mišić, 2020. "Energy Recovery through End-of-Life Vehicles Recycling in Developing Countries," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    13. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    14. Liu, Sheng & Yu, Jie & Bikane, Kagiso & Chen, Tao & Ma, Chuan & Wang, Ben & Sun, Lushi, 2018. "Rubber pyrolysis: Kinetic modeling and vulcanization effects," Energy, Elsevier, vol. 155(C), pages 215-225.
    15. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    16. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    17. Hwang, Jae Gyu & Lee, Byeong Kyu & Choi, Myung Kyu & Park, Hoon Chae & Choi, Hang Seok, 2023. "Optimal production of waste tire pyrolysis oil and recovery of high value-added D-limonene in a conical spouted bed reactor," Energy, Elsevier, vol. 262(PB).
    18. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    19. Ma, Chuan & Yu, Jie & Wang, Ben & Song, Zijian & Xiang, Jun & Hu, Song & Su, Sheng & Sun, Lushi, 2016. "Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 433-450.
    20. Dong, Ruikun & Zhao, Mengzhen, 2018. "Research on the pyrolysis process of crumb tire rubber in waste cooking oil," Renewable Energy, Elsevier, vol. 125(C), pages 557-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:745-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.