IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp1097-1108.html
   My bibliography  Save this article

Frequency responsive services by wind generation resources in United States

Author

Listed:
  • Singarao, Venkatesh Yadav
  • Rao, Vittal S.

Abstract

United States’ Wind Vision report envisions wind energy to generate 20% and 35% of nation׳s electricity by 2030 and 2050 respectively. Taking in to account of the aforementioned vision, the electric power industry is promoting generation of wind power and integration into the US interconnection grids. Over the last decade, this fast growing grid connected wind power generation has raised several new technical, regulatory and economic concerns for grid operations and electricity markets. Therefore, it becomes essential to perform research study and determine possible solutions for the integration of high penetration levels of wind power with the power grid. This paper focuses on the grid integration issue associated with deteriorated frequency response of power system when significant levels of wind power generation is present in the total generation mix. A brief review of the recently introduced frequency response regulatory standards and requirements for wind power plants in United States is presented along with the turbine manufacturer׳s advanced grid technology upgrade options to maintain the power system reliability. This paper evaluates the provision of ancillary services such as Emulated Inertial Response (EIR) and Primary Frequency Response (PFR) by wind generation resources, and investigates the impact of different control architectures on frequency response metrics. Further, it discusses the costs, benefits and other economic impacts associated with the various frequency control techniques of wind power plants. Finally, guidelines and priorities for wind turbine manufacturers, generating entities, balancing authorities and regulators are provided to ensure the increased reliability without additional costs.

Suggested Citation

  • Singarao, Venkatesh Yadav & Rao, Vittal S., 2016. "Frequency responsive services by wind generation resources in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1097-1108.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:1097-1108
    DOI: 10.1016/j.rser.2015.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nimmagadda, Sandeep & Islam, Atiqul & Bayne, Stephen B. & Walker, R.P. & Garcia Caballero, Lourdes & Fisas Camanes, Albert, 2014. "A study of recent changes in Southwest Power Pool and Electric Reliability Council of Texas and its impact on the U.S. wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 350-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
    2. Marcelo Godoy Simões & Abdullah Bubshait, 2019. "Frequency Support of Smart Grid Using Fuzzy Logic-Based Controller for Wind Energy Systems," Energies, MDPI, vol. 12(8), pages 1-15, April.
    3. Changgi Min, 2020. "Impact Analysis of Transmission Congestion on Power System Flexibility in Korea," Energies, MDPI, vol. 13(9), pages 1-11, May.
    4. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    5. Keeratimahat, Kanyawee & Bruce, Anna & MacGill, Iain, 2021. "Analysis of short-term operational forecast deviations and controllability of utility-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 167(C), pages 343-358.
    6. Borne, Olivier & Korte, Klaas & Perez, Yannick & Petit, Marc & Purkus, Alexandra, 2018. "Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 605-614.
    7. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    8. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cláudio Albuquerque Frate & Christian Brannstrom, 2019. "How Do Stakeholders Perceive Barriers to Large-Scale Wind Power Diffusion? A Q-Method Case Study from Ceará State, Brazil," Energies, MDPI, vol. 12(11), pages 1-14, May.
    2. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    3. Akhavein, Ali & Porkar, Babak, 2017. "A composite generation and transmission reliability test system for research purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 331-337.
    4. Lucy, Zachary & Kern, Jordan, 2021. "Analysis of fixed volume swaps for hedging financial risk at large-scale wind projects," Energy Economics, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:1097-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.