IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp1262-1277.html
   My bibliography  Save this article

Biotechnology for Jatropha improvement: A worthy exploration

Author

Listed:
  • Moniruzzaman, M.
  • Yaakob, Zahira
  • Khatun, Rahima

Abstract

Comfortable life, economic growth, industrialisation, global warming, energy security and sustainable environment are burning issues facing modern civilisation. The availability of adequate renewable energy is in demand. Jatropha is being explored as a potential biofuel crop candidate because of its biodiesel production potential, high oil content, rapid growth, easy propagation, drought tolerant nature, relatively less irrigation and agricultural inputs, insect and pest resistance. However, previous programmes for Jatropha plantation did not satisfy the expectation because of the absence of a good commercial variety, large scale propagation without evaluating the planting material, knowledge gap and consideration as low a impute crop. Lack of systematic breeding programmes, the inexistence of a collaboration between scientists in this field, the unavailability of desired germplasm and more importantly less variability within the species are the constraints for the conventional breeding for a Jatropha improvement programme. Biological techniques have proven records for the improvement of many crops. Jatropha “organogenesis”, which has insignificant contribution to genetic improvement, is studied. Several genomic and transgenic studies have been reported, but it is still far behind in comparison to other crops. It is time to investigate somaclonal variation, in vitro selection and haploid breeding for Jatropha improvement. Resequencing and transcriptom analysis are necessary for high dance linkage map and a good reference genome. Genome wide association studies (GWAS) and genomic selection (GS) are pending. Genetic engineering, particularly to increase female flowers in inflorescence, eliminates the toxic component and increases tolerance to diseases, insects and pests should be given priority.

Suggested Citation

  • Moniruzzaman, M. & Yaakob, Zahira & Khatun, Rahima, 2016. "Biotechnology for Jatropha improvement: A worthy exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1262-1277.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1262-1277
    DOI: 10.1016/j.rser.2015.10.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    2. Singh, R.N. & Vyas, D.K. & Srivastava, N.S.L. & Narra, Madhuri, 2008. "SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy," Renewable Energy, Elsevier, vol. 33(8), pages 1868-1873.
    3. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    4. Khalil, H.P.S. Abdul & Aprilia, N.A. Sri & Bhat, A.H. & Jawaid, M. & Paridah, M.T. & Rudi, D., 2013. "A Jatropha biomass as renewable materials for biocomposites and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 667-685.
    5. Divakara, B.N. & Upadhyaya, H.D. & Wani, S.P. & Gowda, C.L. Laxmipathi, 2010. "Biology and genetic improvement of Jatropha curcas L.: A review," Applied Energy, Elsevier, vol. 87(3), pages 732-742, March.
    6. Yue, Gen Hua & Sun, Fei & Liu, Peng, 2013. "Status of molecular breeding for improving Jatropha curcas and biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 332-343.
    7. van Eijck, Janske & Romijn, Henny & Balkema, Annelies & Faaij, André, 2014. "Global experience with jatropha cultivation for bioenergy: An assessment of socio-economic and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 869-889.
    8. Jain, Siddharth & Sharma, M.P., 2010. "Prospects of biodiesel from Jatropha in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 763-771, February.
    9. Hou, Jian & Zhang, Peidong & Yuan, Xianzheng & Zheng, Yonghong, 2011. "Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5081-5091.
    10. Singh, S.P. & Singh, Dipti, 2010. "Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 200-216, January.
    11. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    12. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    13. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    14. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    15. Murali Krishna M, V.S. & Seshagiri Rao V, V.R. & T, Kishen Kumar Reddy & Murthy P, V.K., 2014. "Performance evaluation of medium grade low heat rejection diesel engine with carbureted methanol and crude jatropha oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 122-135.
    16. Ceasar, S.A. & Ignacimuthu, S., 2011. "Applications of biotechnology and biochemical engineering for the improvement of Jatropha and Biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5176-5185.
    17. Yang, Cheng-Yuan & Fang, Zhen & Li, Bo & Long, Yun-feng, 2012. "Review and prospects of Jatropha biodiesel industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2178-2190.
    18. Kumar, Sunil & Chaube, Alok & Jain, Shashi Kumar, 2012. "Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1089-1098.
    19. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    20. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    21. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    22. Liu, Xuan & Ye, Meng & Pu, Biao & Tang, Zhikang, 2012. "Risk management for jatropha curcas based biodiesel industry of Panzhihua Prefecture in Southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1721-1734.
    23. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    24. Vyas, D.K. & Singh, R.N., 2007. "Feasibility study of Jatropha seed husk as an open core gasifier feedstock," Renewable Energy, Elsevier, vol. 32(3), pages 512-517.
    25. Krishna, M.V.S. Murali & Rao, V.V.R. Seshagiri & Reddy, T. Kishen Kumar & Murthy, P.V.K., 2014. "Comparative studies on performance evaluation of DI diesel engine with high grade low heat rejection combustion chamber with carbureted alcohols and crude jatropha oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sánchez, A.S. & Almeida, M.B. & Torres, E.A. & Kalid, R.A. & Cohim, E. & Gasparatos, A., 2018. "Alternative biodiesel feedstock systems in the Semi-arid region of Brazil: Implications for ecosystem services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2744-2758.
    2. Giwa, Adewale & Adeyemi, Idowu & Dindi, Abdallah & Lopez, Celia García-Baños & Lopresto, Catia Giovanna & Curcio, Stefano & Chakraborty, Sudip, 2018. "Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 239-257.
    3. Mazumdar, Purabi & Singh, Pooja & Babu, Subramanian & Siva, Ramamoorthy & Harikrishna, Jennifer Ann, 2018. "An update on biological advancement of Jatropha curcas L.: New insight and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 903-917.
    4. Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
    5. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    6. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edrisi, Sheikh Adil & Dubey, Rama Kant & Tripathi, Vishal & Bakshi, Mansi & Srivastava, Pankaj & Jamil, Sarah & Singh, H.B. & Singh, Nandita & Abhilash, P.C., 2015. "Jatropha curcas L.: A crucified plant waiting for resurgence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 855-862.
    2. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    3. Lim, Bo Yuan & Shamsudin, Rosnah & Baharudin, B.T. Hang Tuah & Yunus, Robiah, 2015. "A review of processing and machinery for Jatropha curcas L. fruits and seeds in biodiesel production: Harvesting, shelling, pretreatment and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 991-1002.
    4. Mazumdar, Purabi & Singh, Pooja & Babu, Subramanian & Siva, Ramamoorthy & Harikrishna, Jennifer Ann, 2018. "An update on biological advancement of Jatropha curcas L.: New insight and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 903-917.
    5. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Atabani, A.E. & Chong, W.T., 2013. "A global comparative review of biodiesel production from jatropha curcas using different homogeneous acid and alkaline catalysts: Study of physical and chemical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 514-533.
    6. Pandey, Vimal Chandra & Singh, Kripal & Singh, Jay Shankar & Kumar, Akhilesh & Singh, Bajrang & Singh, Rana P., 2012. "Jatropha curcas: A potential biofuel plant for sustainable environmental development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2870-2883.
    7. Kumar, Praveen & Srivastava, Vimal Chandra & Jha, Mithilesh Kumar, 2016. "Jatropha curcas phytotomy and applications: Development as a potential biofuel plant through biotechnological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 818-838.
    8. Laviola, Bruno Galvêas & Rodrigues, Erina Vitório & Teodoro, Paulo Eduardo & Peixoto, Leonardo de Azevedo & Bhering, Leonardo Lopes, 2017. "Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 894-904.
    9. Yue, Gen Hua & Sun, Fei & Liu, Peng, 2013. "Status of molecular breeding for improving Jatropha curcas and biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 332-343.
    10. Babazadeh, Reza, 2017. "Optimal design and planning of biodiesel supply chain considering non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1089-1100.
    11. Mario R. Giraldi-Díaz & Lorena De Medina-Salas & Eduardo Castillo-González & Max De la Cruz-Benavides, 2018. "Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    12. Petr Procházka & Luboš Smutka & Vladimír Hönig, 2019. "Using Biofuels for Highly Renewable Electricity Systems: A Case Study of the Jatropha curcas," Energies, MDPI, vol. 12(15), pages 1-17, August.
    13. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    14. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    15. Silitonga, A.S. & Masjuki, H.H. & Mahlia, T.M.I. & Ong, H.C. & Chong, W.T. & Boosroh, M.H., 2013. "Overview properties of biodiesel diesel blends from edible and non-edible feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 346-360.
    16. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    19. van Eijck, Janske & Romijn, Henny & Balkema, Annelies & Faaij, André, 2014. "Global experience with jatropha cultivation for bioenergy: An assessment of socio-economic and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 869-889.
    20. Julio C. Sacramento Rivero & Amarella Eastmond-Spencer & Javier Becerril García & Freddy S. Navarro-Pineda, 2016. "A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico," Sustainability, MDPI, vol. 8(12), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1262-1277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.