IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp942-951.html
   My bibliography  Save this article

Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production

Author

Listed:
  • Sarma, Saurabh Jyoti
  • Pachapur, Vinayak
  • Brar, Satinder Kaur
  • Le Bihan, Yann
  • Buelna, Gerardo

Abstract

In terms of greenhouse gas emission reduction potential, hydrogen is superior to commercial biofuels and fossil fuels because it has high energy density and it generates only water as major emission. Biohydrogen production has additional environmental benefit as different organic wastes can be valorized during the process; however, because of high process cost, its commercial production is not yet there. During dark fermentation, in addition to hydrogen, around 60% of the feedstock may convert to various industrial chemicals including ethanol, 1, 3 propanediol and butyric acid. If these products are not recovered, the liquid waste generated during the process can be used as the feedstock for production of polyhydroxyalkanoates, lipid, methane, hydrogen and electricity. The liquid waste is also a potential substitute of phosphate solubilizing bio-fertilizers. Thus, in this review, biohydrogen production process is evaluated as a potential biorefinery producing biofuels, fine chemicals and biomaterials. The strategy could be useful to reduce overall cost of the process by generating revenue from multiple sources.

Suggested Citation

  • Sarma, Saurabh Jyoti & Pachapur, Vinayak & Brar, Satinder Kaur & Le Bihan, Yann & Buelna, Gerardo, 2015. "Hydrogen biorefinery: Potential utilization of the liquid waste from fermentative hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 942-951.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:942-951
    DOI: 10.1016/j.rser.2015.04.191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115005237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sigurbjornsdottir, Margret Audur & Orlygsson, Johann, 2012. "Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring," Applied Energy, Elsevier, vol. 97(C), pages 785-791.
    2. Hisham Hafez & George Nakhla & Hesham El Naggar, 2009. "Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System," Energies, MDPI, vol. 2(2), pages 1-11, June.
    3. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    2. Kumar, Gopalakrishnan & Bakonyi, Péter & Kobayashi, Takuro & Xu, Kai-Qin & Sivagurunathan, Periyasamy & Kim, Sang-Hyoun & Buitrón, Germán & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2016. "Enhancement of biofuel production via microbial augmentation: The case of dark fermentative hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 879-891.
    3. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    4. Fuess, Lucas Tadeu & Klein, Bruno Colling & Chagas, Mateus Ferreira & Alves Ferreira Rezende, Mylene Cristina & Garcia, Marcelo Loureiro & Bonomi, Antonio & Zaiat, Marcelo, 2018. "Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach," Renewable Energy, Elsevier, vol. 122(C), pages 674-687.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    2. Silva, V. & Ratti, R.P. & Sakamoto, I.K. & Andrade, M.V.F. & Varesche, M.B.A., 2018. "Biotechnological products in batch reactors obtained from cellulose, glucose and xylose using thermophilic anaerobic consortium," Renewable Energy, Elsevier, vol. 125(C), pages 537-545.
    3. Filimonau, Viachaslau & Högström, Michaela, 2017. "The attitudes of UK tourists to the use of biofuels in civil aviation: An exploratory study," Journal of Air Transport Management, Elsevier, vol. 63(C), pages 84-94.
    4. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    5. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    6. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    7. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    8. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    9. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    10. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    11. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    12. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    13. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    14. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    15. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    16. Lenka Rumánková & Luboš Smutka, 2013. "Global sugar market - the analysis of factors influencing supply and demand," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 61(2), pages 463-471.
    17. Starfelt, Fredrik & Daianova, Lilia & Yan, Jinyue & Thorin, Eva & Dotzauer, Erik, 2012. "The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study," Applied Energy, Elsevier, vol. 92(C), pages 791-799.
    18. Akroum-Amrouche, Dahbia & Abdi, Nadia & Lounici, Hakim & Mameri, Nabil, 2011. "Effect of physico-chemical parameters on biohydrogen production and growth characteristics by batch culture of Rhodobacter sphaeroides CIP 60.6," Applied Energy, Elsevier, vol. 88(6), pages 2130-2135, June.
    19. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    20. Aloisio S. Nascimento Filho & Rafael G. O. dos Santos & João Gabriel A. Calmon & Peterson A. Lobato & Marcelo A. Moret & Thiago B. Murari & Hugo Saba, 2022. "Induction of a Consumption Pattern for Ethanol and Gasoline in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-11, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:942-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.