IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v48y2015icp791-812.html
   My bibliography  Save this article

Polish heat pump market between 2000 and 2013: European background, current state and development prospects

Author

Listed:
  • Zimny, Jacek
  • Michalak, Piotr
  • Szczotka, Krzysztof

Abstract

The article presents the development of the heat pump market in Europe, with special attention given to Poland, over the 2000–2013 period, basing on available statistical data and own research.

Suggested Citation

  • Zimny, Jacek & Michalak, Piotr & Szczotka, Krzysztof, 2015. "Polish heat pump market between 2000 and 2013: European background, current state and development prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 791-812.
  • Handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:791-812
    DOI: 10.1016/j.rser.2015.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115002750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Romain Deguest & Xuedong He, 2011. "Loss-Based Risk Measures," Working Papers hal-00629929, HAL.
    2. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    3. Nast, M., 2010. "Renewable energies heat act and government grants in Germany," Renewable Energy, Elsevier, vol. 35(8), pages 1852-1856.
    4. Sutherland, Ronald J, 1996. "The economics of energy conservation policy," Energy Policy, Elsevier, vol. 24(4), pages 361-370, April.
    5. Sliwa, Tomasz & Kotyza, Jaroslaw, 2003. "Application of existing wells as ground heat source for heat pumps in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 3-8, January.
    6. Omojaro, Peter & Breitkopf, Cornelia, 2013. "Direct expansion solar assisted heat pumps: A review of applications and recent research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 33-45.
    7. Shaw, Rita & Attree, Mike & Jackson, Tim, 2010. "Developing electricity distribution networks and their regulation to support sustainable energy," Energy Policy, Elsevier, vol. 38(10), pages 5927-5937, October.
    8. Igliński, Bartłomiej & Buczkowski, Roman & Kujawski, Wojciech & Cichosz, Marcin & Piechota, Grzegorz, 2012. "Geoenergy in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2545-2557.
    9. Amecke, Hermann & Neuhoff, Karsten, 2011. "Map of Policies Supporting Thermal Efficiency in Germany’s Residential Building Sector," EconStor Research Reports 65869, ZBW - Leibniz Information Centre for Economics.
    10. ., 2011. "The Measures of Innovative Activity in Italy," Chapters, in: The Dynamics of Knowledge Externalities, chapter 9, Edward Elgar Publishing.
    11. Michalak, Piotr & Zimny, Jacek, 2011. "Wind energy development in the world, Europe and Poland from 1995 to 2009; current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2330-2341, June.
    12. Zimny, Jacek & Michalak, Piotr & Bielik, Sebastian & Szczotka, Krzysztof, 2013. "Directions in development of hydropower in the world, in Europe and Poland in the period 1995–2011," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 117-130.
    13. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    14. Hyysalo, Sampsa & Juntunen, Jouni K. & Freeman, Stephanie, 2013. "User innovation in sustainable home energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 490-500.
    15. Fadhel, M.I. & Sopian, K. & Daud, W.R.W. & Alghoul, M.A., 2011. "Review on advanced of solar assisted chemical heat pump dryer for agriculture produce," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1152-1168, February.
    16. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    17. Levine, Mark D. & Koomey, Jonathan G. & Price, Lynn & Geller, Howard & Nadel, Steven, 1995. "Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world," Energy, Elsevier, vol. 20(1), pages 37-61.
    18. Oecd, 2011. "Fiscal consolidation: targets, plans and measures," OECD Journal on Budgeting, OECD Publishing, vol. 11(2), pages 15-67.
    19. Daghigh, Ronak & Ruslan, Mohd Hafidz & Sulaiman, Mohamad Yusof & Sopian, Kamaruzzaman, 2010. "Review of solar assisted heat pump drying systems for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2564-2579, December.
    20. Kepinska, Beata, 2003. "Current state and prospects of geothermal-energy implementation in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 43-51, January.
    21. Jehlickova, Bohumira & Morris, Richard, 2007. "Effectiveness of policy instruments for supporting the use of waste wood as a renewable energy resource in the Czech Republic," Energy Policy, Elsevier, vol. 35(1), pages 577-585, January.
    22. Chwieduk, Dorota, 1996. "Analysis of utilisation of renewable energies as heat sources for heat pumps in building sector in Poland," Renewable Energy, Elsevier, vol. 9(1), pages 720-723.
    23. Connor, Peter & Bürger, Veit & Beurskens, Luuk & Ericsson, Karin & Egger, Christiane, 2013. "Devising renewable heat policy: Overview of support options," Energy Policy, Elsevier, vol. 59(C), pages 3-16.
    24. Allen, Alistair & Milenic, Dejan, 2003. "Low-enthalpy geothermal energy resources from groundwater in fluvioglacial gravels of buried valleys," Applied Energy, Elsevier, vol. 74(1-2), pages 9-19, January.
    25. van Wees, M.T & Uyterlinde, M.A & Maly, M, 2002. "Energy efficiency and renewable energy policy in the Czech Republic within the framework of accession to the European Union," Energy, Elsevier, vol. 27(11), pages 1057-1067.
    26. Steinbach, Jan & Ragwitz, Mario & Bürger, Veit & Becker, Liv & Kranzl, Lukas & Hummel, Marcus & Müller, Andreas, 2013. "Analysis of harmonisation options for renewable heating support policies in the European Union," Energy Policy, Elsevier, vol. 59(C), pages 59-70.
    27. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    28. Bürger, Veit & Klinski, Stefan & Lehr, Ulrike & Leprich, Uwe & Nast, Michael & Ragwitz, Mario, 2008. "Policies to support renewable energies in the heat market," Energy Policy, Elsevier, vol. 36(8), pages 3140-3149, August.
    29. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech & Plaskacz, Marta, 2013. "Renewable energy production in the Zachodniopomorskie Voivodeship (Poland)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 768-777.
    30. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    31. He, Yuqing, 2011. "Psychophysical interpretation for utility measures," Economics Discussion Papers 2011-50, Kiel Institute for the World Economy (IfW Kiel).
    32. Mo Pak Hung, 2011. "Measures of Income Distribution and Economic Growth," Journal of Income Distribution, Ad libros publications inc., vol. 20(3-4), pages 24-42, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rokas Valancius & Rao Martand Singh & Andrius Jurelionis & Juozas Vaiciunas, 2019. "A Review of Heat Pump Systems and Applications in Cold Climates: Evidence from Lithuania," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Nis Bertelsen & Brian Vad Mathiesen, 2020. "EU-28 Residential Heat Supply and Consumption: Historical Development and Status," Energies, MDPI, vol. 13(8), pages 1-21, April.
    3. Lekavičius, V. & Bobinaitė, V. & Galinis, A. & Pažėraitė, A., 2020. "Distributional impacts of investment subsidies for residential energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2016. "District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 621-639.
    5. Kozarcanin, S. & Hanna, R. & Staffell, I. & Gross, R. & Andresen, G.B., 2020. "Impact of climate change on the cost-optimal mix of decentralised heat pump and gas boiler technologies in Europe," Energy Policy, Elsevier, vol. 140(C).
    6. Mariusz Szreder & Marek Miara, 2020. "Impact of Compressor Drive System Efficiency on Air Source Heat Pump Performance for Heating Hot Water," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    7. Heiskanen, Eva & Matschoss, Kaisa, 2017. "Understanding the uneven diffusion of building-scale renewable energy systems: A review of household, local and country level factors in diverse European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 580-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    2. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    4. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    5. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
    6. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    7. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    8. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    9. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    10. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    11. Antonijevic, Dragi & Komatina, Mirko, 2011. "Sustainable sub-geothermal heat pump heating in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3534-3538.
    12. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    13. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    14. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    15. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    16. Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
    17. Dusseault, Bernard & Pasquier, Philippe, 2021. "Usage of the net present value-at-risk to design ground-coupled heat pump systems under uncertain scenarios," Renewable Energy, Elsevier, vol. 173(C), pages 953-971.
    18. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    19. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    20. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:791-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.