IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v48y2015icp624-634.html
   My bibliography  Save this article

A review on hydronic asphalt pavement for energy harvesting and snow melting

Author

Listed:
  • Pan, Pan
  • Wu, Shaopeng
  • Xiao, Yue
  • Liu, Gang

Abstract

Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications.

Suggested Citation

  • Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
  • Handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:624-634
    DOI: 10.1016/j.rser.2015.04.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115002993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siva Reddy, V. & Kaushik, S.C. & Ranjan, K.R. & Tyagi, S.K., 2013. "State-of-the-art of solar thermal power plants—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 258-273.
    2. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    3. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    4. Price, Trevor & Probert, Douglas, 1997. "Harnessing hydropower: A practical guide," Applied Energy, Elsevier, vol. 57(2-3), pages 175-251, June.
    5. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    6. Yuan, Jiahai & Kang, Junjie & Yu, Cong & Hu, Zhaoguang, 2011. "Energy conservation and emissions reduction in China—Progress and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4334-4347.
    7. García, Alvaro & Partl, Manfred N., 2014. "How to transform an asphalt concrete pavement into a solar turbine," Applied Energy, Elsevier, vol. 119(C), pages 431-437.
    8. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    9. Bobes-Jesus, Vanesa & Pascual-Muñoz, Pablo & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2013. "Asphalt solar collectors: A literature review," Applied Energy, Elsevier, vol. 102(C), pages 962-970.
    10. Gao, Qing & Li, Ming & Yu, Ming & Spitler, Jeffrey D. & Yan, Y.Y., 2009. "Review of development from GSHP to UTES in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1383-1394, August.
    11. Wang, Mingyong & Wang, Zhi & Gong, Xuzhong & Guo, Zhancheng, 2014. "The intensification technologies to water electrolysis for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 573-588.
    12. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    13. Hernández-Escobedo, Q. & Manzano-Agugliaro, F. & Zapata-Sierra, A., 2010. "The wind power of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2830-2840, December.
    14. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    15. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    4. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    5. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    6. Musfira Rahman & Gamal Mabrouk & Samer Dessouky, 2023. "Development of a Photovoltaic-Based Module for Harvesting Solar Energy from Pavement: A Lab and Field Assessment," Energies, MDPI, vol. 16(8), pages 1-20, April.
    7. Mirzanamadi, Raheb & Hagentoft, Carl-Eric & Johansson, Pär, 2020. "Coupling a Hydronic Heating Pavement to a Horizontal Ground Heat Exchanger for harvesting solar energy and heating road surfaces," Renewable Energy, Elsevier, vol. 147(P1), pages 447-463.
    8. Mansour Fakhri & Sajad Javadi & Reza Sedghi & Alireza Sassani & Ali Arabzadeh & Behnam Baveli Bahmai, 2021. "Microwave Induction Heating of Polymer-Modified Asphalt Materials for Self-Healing and Deicing," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    9. Ghalandari, Taher & Kia, Alalea & Taborda, David M.G. & Van den bergh, Wim & Vuye, Cedric, 2023. "Thermal performance optimisation of Pavement Solar Collectors using response surface methodology," Renewable Energy, Elsevier, vol. 210(C), pages 656-670.
    10. Ghalandari, Taher & Baetens, Robin & Verhaert, Ivan & SNM Nasir, Diana & Van den bergh, Wim & Vuye, Cedric, 2022. "Thermal performance of a controllable pavement solar collector prototype with configuration flexibility," Applied Energy, Elsevier, vol. 313(C).
    11. Haider, Muhammad Zeeshan & Jin, Xinghan & Hu, Jong Wan, 2023. "Development of nanomodified-cementitious composite using phase change material for energy saving applications," Applied Energy, Elsevier, vol. 340(C).
    12. Dai, Jiasheng & Ma, Feng & Fu, Zhen & Li, Chen & Jia, Meng & Shi, Ke & Wen, Yalu & Wang, Wentong, 2021. "Applicability assessment of stearic acid/palmitic acid binary eutectic phase change material in cooling pavement," Renewable Energy, Elsevier, vol. 175(C), pages 748-759.
    13. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen & Zelei Gao, 2020. "Numerical Study on Optimal Scheme of the Geothermally Heated Bridge Deck System," Energies, MDPI, vol. 13(24), pages 1-21, December.
    14. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    15. Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).
    16. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    17. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    18. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    19. Behnam Ghorbani & Arul Arulrajah & Guillermo A. Narsilio & Suksun Horpibulsuk & Apinun Buritatum, 2023. "Geothermal Pavements: Experimental Testing, Prototype Testing, and Numerical Analysis of Recycled Demolition Wastes," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    20. Zabihi, Niloufar & Gu, Zewen & Saafi, Mohamed, 2023. "Crank shaft road electromagnetic road energy harvester for smart city applications," Applied Energy, Elsevier, vol. 352(C).
    21. Raheb Mirzanamadi & Carl-Eric Hagentoft & Pär Johansson, 2018. "Numerical Investigation of Harvesting Solar Energy and Anti-Icing Road Surfaces Using a Hydronic Heating Pavement and Borehole Thermal Energy Storage," Energies, MDPI, vol. 11(12), pages 1-23, December.
    22. Pei, Jianzhong & Zhou, Bochao & Lyu, Lei, 2019. "e-Road: The largest energy supply of the future?," Applied Energy, Elsevier, vol. 241(C), pages 174-183.
    23. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    24. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    25. Stefan Blomqvist & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund, 2019. "Analyzing the Performance and Control of a Hydronic Pavement System in a District Heating Network," Energies, MDPI, vol. 12(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholikhani, Mohammadreza & Roshani, Hossein & Dessouky, Samer & Papagiannakis, A.T., 2020. "A critical review of roadway energy harvesting technologies," Applied Energy, Elsevier, vol. 261(C).
    2. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    3. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    4. Hu, Hengwu & Vizzari, Domenico & Zha, Xudong & Roberts, Ronald, 2021. "Solar pavements: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    6. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    7. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    8. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    9. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2020. "Does Renewable Energy Technologies and Poverty Affect the Sustainable Growth in Emerging Countries?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 865-887, September.
    10. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    12. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    13. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    14. Chiarelli, A. & Dawson, A.R. & García, A., 2015. "Parametric analysis of energy harvesting pavements operated by air convection," Applied Energy, Elsevier, vol. 154(C), pages 951-958.
    15. Azadeh, A. & Babazadeh, R. & Asadzadeh, S.M., 2013. "Optimum estimation and forecasting of renewable energy consumption by artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 605-612.
    16. Huiru Zhao & Sen Guo, 2015. "External Benefit Evaluation of Renewable Energy Power in China for Sustainability," Sustainability, MDPI, vol. 7(5), pages 1-23, April.
    17. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    18. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    19. Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Sian-Jing, 2014. "Bi-model short-term solar irradiance prediction using support vector regressors," Energy, Elsevier, vol. 70(C), pages 121-127.
    20. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:48:y:2015:i:c:p:624-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.