IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v45y2015icp173-191.html
   My bibliography  Save this article

A review of membrane contactors applied in absorption refrigeration systems

Author

Listed:
  • Asfand, Faisal
  • Bourouis, Mahmoud

Abstract

The use of membrane contactor technology is well-known in the process industry and can be employed in many important fields; such as separation and absorption processes, membrane distillation, pervaporation, biotechnology, food industries etc. In recent years, research has been carried out regarding the use of membrane contactors in the components of absorption refrigeration systems. The use of membrane contactors makes it realizable to design compact components with improved heat and mass transfer. Heat and mass transfer performance of the components is significantly enhanced due to the higher area to volume ratio available. Membrane based absorber and desorber allow the reduction in size of the absorption refrigeration systems to a great extent and thus absorption refrigeration technology can be used in transport and small scale applications. In this paper, the applications of membrane contactors in absorption refrigeration systems are reviewed. The application of membrane contactors in the components of absorption refrigeration systems, the configurations of refrigeration cycles that employ membrane contactors and the characteristics of the membrane contactors used in absorption refrigeration systems are all reviewed in detail. Information is collected on the choice of working fluid mixture to be used in absorption refrigeration systems that use membrane based components and the compatibility of working fluid mixtures with the membrane contactor material is discussed. The significance and limitations of using membrane contactors in absorption refrigeration systems is included in this paper.

Suggested Citation

  • Asfand, Faisal & Bourouis, Mahmoud, 2015. "A review of membrane contactors applied in absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 173-191.
  • Handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:173-191
    DOI: 10.1016/j.rser.2015.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Ahmed Hamza H., 2010. "Design of a compact absorber with a hydrophobic membrane contactor at the liquid-vapor interface for lithium bromide-water absorption chillers," Applied Energy, Elsevier, vol. 87(4), pages 1112-1121, April.
    2. Riffat, S.B. & Su, Y.H., 2001. "Analysis of a novel absorption refrigeration cycle using centrifugal separation," Energy, Elsevier, vol. 26(2), pages 177-185.
    3. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    4. Yokozeki, A. & Shiflett, Mark B., 2007. "Vapor-liquid equilibria of ammonia + ionic liquid mixtures," Applied Energy, Elsevier, vol. 84(12), pages 1258-1273, December.
    5. Kim, Yoon Jo & Kim, Sarah & Joshi, Yogendra K. & Fedorov, Andrei G. & Kohl, Paul A., 2012. "Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid," Energy, Elsevier, vol. 44(1), pages 1005-1016.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Ming & Abdelaziz, Omar & Gao, Zhiming & Yin, Hongxi, 2018. "Isothermal membrane-based air dehumidification: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4060-4069.
    2. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    3. Jesús Cerezo & Roberto Best & Jorge Jesús Chan & Rosenberg J. Romero & Jorge I. Hernandez & Fernando Lara, 2017. "A Theoretical-Experimental Comparison of an Improved Ammonia-Water Bubble Absorber by Means of a Helical Static Mixer," Energies, MDPI, vol. 11(1), pages 1-14, December.
    4. Mustapha, Rasha & Zoughaib, Assaad & Ghaddar, Nesreen & Ghali, Kamel, 2020. "Modified upright cup method for testing water vapor permeability in porous membranes," Energy, Elsevier, vol. 195(C).
    5. Nasr Isfahani, Rasool & Bigham, Sajjad & Mortazavi, Mehdi & Wei, Xing & Moghaddam, Saeed, 2015. "Impact of micromixing on performance of a membrane-based absorber," Energy, Elsevier, vol. 90(P1), pages 997-1004.
    6. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2016. "A simple model to predict the performance of a H2O–LiBr absorber operating with a microporous membrane," Energy, Elsevier, vol. 96(C), pages 383-393.
    7. Karolina Weremijewicz & Andrzej Gajewski, 2021. "Measurement Uncertainty Estimation for Laser Doppler Anemometer," Energies, MDPI, vol. 14(13), pages 1-11, June.
    8. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    9. Alvaro A. S. Lima & Gustavo de N. P. Leite & Alvaro A. V. Ochoa & Carlos A. C. dos Santos & José A. P. da Costa & Paula S. A. Michima & Allysson M. A. Caldas, 2020. "Absorption Refrigeration Systems Based on Ammonia as Refrigerant Using Different Absorbents: Review and Applications," Energies, MDPI, vol. 14(1), pages 1-41, December.
    10. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Sehgal, Shitiz & Alvarado, Jorge L. & Hassan, Ibrahim G. & Kadam, Sambhaji T., 2021. "A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    13. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    14. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    15. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    16. Jia, Teng & Dou, Pengbo & Chen, Erjian & Dai, Yanjun, 2022. "Feasibility and performance analysis of a hybrid GAX-based absorption-compression heat pump system for space heating in extremely cold climate conditions," Energy, Elsevier, vol. 242(C).
    17. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    18. Sui, Zengguang & Wu, Wei, 2022. "A comprehensive review of membrane-based absorbers/desorbers towards compact and efficient absorption refrigeration systems," Renewable Energy, Elsevier, vol. 201(P1), pages 563-593.
    19. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    20. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2016. "Performance evaluation of membrane-based absorbers employing H2O/(LiBr + LiI + LiNO3 + LiCl) and H2O/(LiNO3 + KNO3 + NaNO3) as working pairs in absorption cooling systems," Energy, Elsevier, vol. 115(P1), pages 781-790.
    21. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2017. "Adiabatic vs non-adiabatic membrane-based rectangular micro-absorbers for H2O-LiBr absorption chillers," Energy, Elsevier, vol. 134(C), pages 757-766.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Meng & Infante Ferreira, Carlos A., 2017. "Absorption heat pump cycles with NH3 – ionic liquid working pairs," Applied Energy, Elsevier, vol. 204(C), pages 819-830.
    2. Asfand, Faisal & Stiriba, Youssef & Bourouis, Mahmoud, 2015. "CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems," Energy, Elsevier, vol. 91(C), pages 517-530.
    3. Mortazavi, Mehdi & Nasr Isfahani, Rasool & Bigham, Sajjad & Moghaddam, Saeed, 2015. "Absorption characteristics of falling film LiBr (lithium bromide) solution over a finned structure," Energy, Elsevier, vol. 87(C), pages 270-278.
    4. Sui, Zengguang & Sui, Yunren & Wu, Wei, 2022. "Multi-objective optimization of a microchannel membrane-based absorber with inclined grooves based on CFD and machine learning," Energy, Elsevier, vol. 240(C).
    5. Nasr Isfahani, Rasool & Bigham, Sajjad & Mortazavi, Mehdi & Wei, Xing & Moghaddam, Saeed, 2015. "Impact of micromixing on performance of a membrane-based absorber," Energy, Elsevier, vol. 90(P1), pages 997-1004.
    6. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2016. "A simple model to predict the performance of a H2O–LiBr absorber operating with a microporous membrane," Energy, Elsevier, vol. 96(C), pages 383-393.
    7. Michel, Benoit & Le Pierrès, Nolwenn & Stutz, Benoit, 2017. "Performances of grooved plates falling film absorber," Energy, Elsevier, vol. 138(C), pages 103-117.
    8. Zhai, Chong & Wu, Wei, 2021. "Performance optimization and comparison towards compact and efficient absorption refrigeration system with conventional and emerging absorbers/desorbers," Energy, Elsevier, vol. 229(C).
    9. Sujatha, I. & Venkatarathnam, G., 2017. "Performance of a vapour absorption heat transformer operating with ionic liquids and ammonia," Energy, Elsevier, vol. 141(C), pages 924-936.
    10. Venegas, M. & de Vega, M. & García-Hernando, N. & Ruiz-Rivas, U., 2017. "Adiabatic vs non-adiabatic membrane-based rectangular micro-absorbers for H2O-LiBr absorption chillers," Energy, Elsevier, vol. 134(C), pages 757-766.
    11. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.
    12. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    13. Zhai, Chong & Wu, Wei & Coronas, Alberto, 2021. "Membrane-based absorption cooling and heating: Development and perspectives," Renewable Energy, Elsevier, vol. 177(C), pages 663-688.
    14. Cola, Fabrizio & Hey, Jonathan & Romagnoli, Alessandro, 2018. "Characterization of the droplet formation phase for the H2OLiBr absorber: An analytical and experimental analysis," Applied Energy, Elsevier, vol. 222(C), pages 885-897.
    15. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    16. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    17. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    18. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    19. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    20. Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:173-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.