IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp407-422.html
   My bibliography  Save this article

A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers

Author

Listed:
  • He, Suoying
  • Gurgenci, Hal
  • Guan, Zhiqiang
  • Huang, Xiang
  • Lucas, Manuel

Abstract

There is no dearth of published data concerning direct evaporative cooling, especially concerning the wetted media used in this technique. In spite of the data abundance, the lack of a comprehensive review of wetted media with potential use for inlet air pre-cooling of Natural Draft Dry Cooling Towers (NDDCTs) triggered the motivation of this paper. This paper reviews the wetted media with potentiality in the pre-cooling application of NDDCTs in terms of wetted medium types, mathematical models, performance studies and empirical relations. A method to compare wetted media in terms of the balance between cooling potential and pressure drop is proposed and validated. This method should be useful for comparative evaluation of wetted medium types or at least to differentiate between good and bad medium types. The medium cost, the service life, the type of process to be cooled, environmental conditions, water quality, space availability, locations and economic requirements are essential considerations, and some significant trade-offs have to be made during medium selection. A framework for medium selection is presented and the advantages and disadvantages of different medium types are summarized to provide a starting point for such selection. The empirical correlations appeared in the literature are synthesized to better correlate and compare the test data of wetted media and subsequently to provide prerequisite information for performance prediction. Controversies concerning wetted medium studies are discussed, and finally the gaps related to wetted medium studies are articulated.

Suggested Citation

  • He, Suoying & Gurgenci, Hal & Guan, Zhiqiang & Huang, Xiang & Lucas, Manuel, 2015. "A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 407-422.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:407-422
    DOI: 10.1016/j.rser.2014.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114010892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.12.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bedekar, S.V & Nithiarasu, P & Seetharamu, K.N, 1998. "Experimental investigation of the performance of a counter-flow, packed-bed mechanical cooling tower," Energy, Elsevier, vol. 23(11), pages 943-947.
    2. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and application of evaporative cooling in China: A review (I) – Research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3535-3546.
    3. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    4. El-Dessouky, Hisham T.A. & Al-Haddad, Amir A. & Al-Juwayhel, Faisal I., 1996. "Thermal and hydraulic performance of a modified two-stage evaporative cooler," Renewable Energy, Elsevier, vol. 7(2), pages 165-176.
    5. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and applications of evaporative cooling in China: A review (II)—Systems and equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3523-3534.
    6. Kim, Min-Hwi & Kim, Jin-Hyo & Choi, An-Seop & Jeong, Jae-Weon, 2011. "Experimental study on the heat exchange effectiveness of a dry coil indirect evaporation cooler under various operating conditions," Energy, Elsevier, vol. 36(11), pages 6479-6489.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Huimin & Huang, Xianwei & Chen, Lin & Yang, Lijun & Du, Xiaoze, 2020. "Performance prediction and cost-effectiveness analysis of a novel natural draft hybrid cooling system for power plants," Applied Energy, Elsevier, vol. 262(C).
    2. Sun, Yubiao & Duniam, Sam & Guan, Zhiqiang & Gurgenci, Hal & Dong, Peixin & Wang, Jianyong & Hooman, Kamel, 2019. "Coupling supercritical carbon dioxide Brayton cycle with spray-assisted dry cooling technology for concentrated solar power," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    4. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    5. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Ming Gao & Chang Guo & Chaoqun Ma & Yuetao Shi & Fengzhong Sun, 2017. "Thermal Performance for Wet Cooling Tower with Different Layout Patterns of Fillings under Typical Crosswind Conditions," Energies, MDPI, vol. 10(1), pages 1-8, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    2. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Chen, Yi & Yan, Huaxia & Luo, Yimo & Yang, Hongxing, 2019. "A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    6. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    7. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    8. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    9. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
    10. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    11. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    12. Panchabikesan, Karthik & Vellaisamy, Kumaresan & Ramalingam, Velraj, 2017. "Passive cooling potential in buildings under various climatic conditions in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1236-1252.
    13. Olabomi, RasaqAdekunle & Jaafar, A. Bakar & Musa, Md Nor & Sarip, Shamsul & Ariffin, Azrin, 2017. "Techno-economic analysis of innovative production and application of solar thermal chilled water for agricultural soil cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 215-224.
    14. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    15. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    17. Cui, Xin & Yang, Chuanjun & Yan, Weichao & Zhang, Lianying & Wan, Yangda & Chua, Kian Jon, 2023. "Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler," Energy, Elsevier, vol. 278(PB).
    18. Li, Wuyan & Li, Yongcai & Shi, Wenxing & Lu, Jun, 2021. "Energy and exergy study on indirect evaporative cooler used in exhaust air heat recovery," Energy, Elsevier, vol. 235(C).
    19. Li, Wuyan & Wang, Jue & Shi, Wenxing & Lu, Jun, 2022. "High-efficiency cooling solution for exhaust air heat pump: Modeling and experimental validation," Energy, Elsevier, vol. 254(PB).
    20. Du, Yan & Gai, Wen-mei & Jin, Long-zhe & Sheng, Wang, 2017. "Thermal comfort model analysis and optimization performance evaluation of a multifunctional ice storage air conditioning system in a confined mine refuge chamber," Energy, Elsevier, vol. 141(C), pages 964-974.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:407-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.