IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v42y2015icp1260-1278.html
   My bibliography  Save this article

Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)

Author

Listed:
  • Ahmed, Yunus
  • Yaakob, Zahira
  • Akhtar, Parul
  • Sopian, Kamaruzzaman

Abstract

Palm oil is an important edible oil in the global fats and oil market and its industry is also one of the prominent global agricultural industries. The production of crude palm oil reached 62.34 million tonnes in 2014. However, enormous volumes of production has subsequently discharged large volumes of a palm oil mill effluent (POME). POME is a remarkably contaminating effluent due to its high amount of COD, BOD and colour concentrations, which can affect the environment, especially water resources. However, it was recognized as a prospective source of renewable biogas such as biomethane and biohydrogen. Nowadays, with the global emphasis on sustainability, if we simultaneously operate wastewater treatment and produced renewable bio energy in the palm oil industry, then this industry can be environmentally sound, with cleaner production and greater sustainability. The aim of this review is to discuss various existing treatment processes (mainly anaerobic and aerobic digestion, physicochemical treatment and membrane separation) and factors that influence the treatment methods and conversion of POME to renewable biogas such as biomethane and biohydrogen on a commercial scale.

Suggested Citation

  • Ahmed, Yunus & Yaakob, Zahira & Akhtar, Parul & Sopian, Kamaruzzaman, 2015. "Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1260-1278.
  • Handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1260-1278
    DOI: 10.1016/j.rser.2014.10.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114008983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.10.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ugoji, Esther O, 1997. "Anaerobic digestion of palm oil mill effluent and its utilization as fertilizer for environmental protection," Renewable Energy, Elsevier, vol. 10(2), pages 291-294.
    2. Chin, May Ji & Poh, Phaik Eong & Tey, Beng Ti & Chan, Eng Seng & Chin, Kit Ling, 2013. "Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 717-726.
    3. Parawira, W. & Murto, M. & Zvauya, R. & Mattiasson, B., 2006. "Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate," Renewable Energy, Elsevier, vol. 31(6), pages 893-903.
    4. Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "Energy recovery from wastewaters with high-rate anaerobic digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 704-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin & Muis, Zarina Abdul, 2017. "Optimisation of oil palm biomass and palm oil mill effluent (POME) utilisation pathway for palm oil mill cluster with consideration of BioCNG distribution network," Energy, Elsevier, vol. 121(C), pages 865-883.
    2. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    3. Uddin, Waqar & Khan, B. & Shaukat, Neelofar & Majid, Muhammad & Mujtaba, G. & Mehmood, Arshad & Ali, S.M. & Younas, U. & Anwar, Muhammad & Almeshal, Abdullah M., 2016. "Biogas potential for electric power generation in Pakistan: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 25-33.
    4. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    5. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    6. Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
    7. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    8. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    9. Tan, Yue Dian & Lim, Jeng Shiun, 2019. "Feasibility of palm oil mill effluent elimination towards sustainable Malaysian palm oil industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 507-522.
    10. Khatun, Rahima & Reza, Mohammad Imam Hasan & Moniruzzaman, M. & Yaakob, Zahira, 2017. "Sustainable oil palm industry: The possibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 608-619.
    11. Siti Kamariah Md Sa’at & Nastaein Qamaruz Zaman, 2017. "Phytoremediation Potential of Palm Oil Mill Effluent by Constructed Wetland Treatment," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 1(1), pages 49-54, January.
    12. Sharvini, S.R. & Noor, Z.Z. & Stringer, L.C. & Afionis, S. & Chong, C.S., 2022. "Energy generation from palm oil mill effluent: A life cycle cost-benefit analysis and policy insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    13. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    14. Lukitawesa, & Safarudin, Ahmad & Millati, Ria & Taherzadeh, Mohammad J. & Niklasson, Claes, 2018. "Inhibition of patchouli oil for anaerobic digestion and enhancement in methane production using reverse membrane bioreactors," Renewable Energy, Elsevier, vol. 129(PB), pages 748-753.
    15. A Aziz, Md Maniruzzaman & Kassim, Khairul Anuar & ElSergany, Moetaz & Anuar, Syed & Jorat, M. Ehsan & Yaacob, H. & Ahsan, Amimul & Imteaz, Monzur A. & Arifuzzaman,, 2020. "Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Muanruksa, Papasanee & Kaewkannetra, Pakawadee, 2020. "Combination of fatty acids extraction and enzymatic esterification for biodiesel production using sludge palm oil as a low-cost substrate," Renewable Energy, Elsevier, vol. 146(C), pages 901-906.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
    2. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    4. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    5. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    6. Huang, Bao-Cheng & Li, Wen-Wei & Wang, Xu & Lu, Yan & Yu, Han-Qing, 2019. "Customizing anaerobic digestion-coupled processes for energy-positive and sustainable treatment of municipal wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 132-142.
    7. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    8. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    9. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    10. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    12. Annamari Enström & Timo Haatainen & Adrian Suharto & Michael Giebels & Kuan Yee Lee, 2019. "Introducing a new GHG emission calculation approach for alternative methane reduction measures in the wastewater treatment of a palm oil mill," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3065-3076, December.
    13. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    14. Ahyahudin Sodri & Fentinur Evida Septriana, 2022. "Biogas Power Generation from Palm Oil Mill Effluent (POME): Techno-Economic and Environmental Impact Evaluation," Energies, MDPI, vol. 15(19), pages 1-16, October.
    15. Jasmine Sie Ming Tiong & Yi Jing Chan & Jun Wei Lim & Mardawani Mohamad & Chii-Dong Ho & Anisa Ur Rahmah & Worapon Kiatkittipong & Wipoo Sriseubsai & Izumi Kumakiri, 2021. "Simulation and Optimization of Anaerobic Co-Digestion of Food Waste with Palm Oil Mill Effluent for Biogas Production," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    16. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    17. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    18. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    19. Katarzyna Bernat & Dorota Kulikowska & Magdalena Zielińska & Magdalena Zaborowska & Irena Wojnowska-Baryła & Magdalena Łapińska, 2021. "Post-Treatment of the Effluent from Anaerobic Digestion of the Leachate in Two-Stage SBR System Using Alternative Carbon Sources," Sustainability, MDPI, vol. 13(11), pages 1-12, June.
    20. George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:42:y:2015:i:c:p:1260-1278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.