IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v32y2014icp770-776.html
   My bibliography  Save this article

Energy production from biogas: A conceptual review for use in Nigeria

Author

Listed:
  • Olugasa, Temilola T.
  • Odesola, I.F.
  • Oyewola, M.O.

Abstract

The authors reviewed the global methods of biogas production, enrichment, compression and storage for energy generation and highlighted its potential application in meeting energy needs in developing countries, with emphasis on Nigeria. Biogas is becoming an increasingly important source of clean energy for rural and urban areas in developing countries, as can be seen by the increased construction of biodigesters. Biogas digester technology has been domesticated in Nigeria and a number of pilot biogas plants have been built with majority (over 75%) of operational Nigerian manure digesters on piggery, cattle farms or abattoirs. A trend is now seen among academic institutions in Nigeria in the design and construction of biogas digesters, for instance, the Usman Danfodio University Biogas Plant, the Obafemi Awolowo University plant, the University of Ibadan prototype (with a patent), Non-Governmental Organisations (NGOs) and Private sector involvement, which shows increasing interest and availability of biogas technology. Biogas is a renewable fuel that is 60–70% methane and can be used to power household appliances and generate electricity using appropriate technologies. These technologies include Biogas digesters which are being used to collect farm animal waste and convert it to biogas through anaerobic bacterial processes. The biogas generated is enriched through a process of scrubbing to obtain at least 95% purity. The current research focus of the authors towards improving biogas yield, enrichment, compression and storage for use in Nigeria is discussed. The current findings indicate that there are economic advantages for the utilisation of biogas in developing countries like Nigeria.

Suggested Citation

  • Olugasa, Temilola T. & Odesola, I.F. & Oyewola, M.O., 2014. "Energy production from biogas: A conceptual review for use in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 770-776.
  • Handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:770-776
    DOI: 10.1016/j.rser.2013.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113008277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kapdi, S.S. & Vijay, V.K. & Rajesh, S.K. & Prasad, Rajendra, 2005. "Biogas scrubbing, compression and storage: perspective and prospectus in Indian context," Renewable Energy, Elsevier, vol. 30(8), pages 1195-1202.
    2. Akinbami, J. -F. K. & Ilori, M. O. & Oyebisi, T. O. & Akinwumi, I. O. & Adeoti, O., 2001. "Biogas energy use in Nigeria: current status, future prospects and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(1), pages 97-112, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wakeel, Muhammad & Hayat, Tasawer & Shah, Noor Samad & Iqbal, Jibran & Haq Khan, Zia Ul & Shah, Ghulam Mustafa & Rasool, Atta, 2023. "Biogas Energy Resources in Pakistan Status, Potential, and Barriers," Utilities Policy, Elsevier, vol. 84(C).
    2. Divya, D. & Gopinath, L.R. & Merlin Christy, P., 2015. "A review on current aspects and diverse prospects for enhancing biogas production in sustainable means," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 690-699.
    3. Uddin, Waqar & Khan, B. & Shaukat, Neelofar & Majid, Muhammad & Mujtaba, G. & Mehmood, Arshad & Ali, S.M. & Younas, U. & Anwar, Muhammad & Almeshal, Abdullah M., 2016. "Biogas potential for electric power generation in Pakistan: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 25-33.
    4. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    5. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.
    6. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    7. Sekoai, Patrick T. & Ghimire, Anish & Ezeokoli, Obinna T. & Rao, Subramanya & Ngan, Wing Y. & Habimana, Olivier & Yao, Yuan & Yang, Pu & Yiu Fung, Aster Hei & Yoro, Kelvin O. & Daramola, Michael O. & , 2021. "Valorization of volatile fatty acids from the dark fermentation waste Streams-A promising pathway for a biorefinery concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu & Hu, Wei & Sweeney, Sandra, 2013. "Resource availability for household biogas production in rural China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 655-659.
    2. Pipatmanomai, Suneerat & Kaewluan, Sommas & Vitidsant, Tharapong, 2009. "Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm," Applied Energy, Elsevier, vol. 86(5), pages 669-674, May.
    3. Emodi, Nnaemeka Vincent & Boo, Kyung-Jin, 2015. "Sustainable energy development in Nigeria: Current status and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 356-381.
    4. Peter Omojaro, 2011. "Energy analysis for onsite and offsite suburban wastewater," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 519-533, June.
    5. Jekayinfa, S.O. & Bamgboye, A.I., 2008. "Energy use analysis of selected palm-kernel oil mills in south western Nigeria," Energy, Elsevier, vol. 33(1), pages 81-90.
    6. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    7. Yan, Cheng & Zheng, Zheng, 2014. "Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp," Applied Energy, Elsevier, vol. 113(C), pages 1008-1014.
    8. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    9. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    10. Tippayawong, N. & Thanompongchart, P., 2010. "Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor," Energy, Elsevier, vol. 35(12), pages 4531-4535.
    11. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    12. Ajayi, Oluseyi O, 2013. "Sustainable energy development and environmental protection: Implication for selected states in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 532-539.
    13. Arthur, Richard & Baidoo, Martina Francisca & Antwi, Edward, 2011. "Biogas as a potential renewable energy source: A Ghanaian case study," Renewable Energy, Elsevier, vol. 36(5), pages 1510-1516.
    14. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    15. Jha, Priyanka & Schmidt, Stefan, 2021. "State of biofuel development in sub-Saharan Africa: How far sustainable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Karellas, Sotirios & Boukis, Ioannis & Kontopoulos, Georgios, 2010. "Development of an investment decision tool for biogas production from agricultural waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1273-1282, May.
    17. Mustapha Mukhtar & Sandra Obiora & Nasser Yimen & Zhang Quixin & Olusola Bamisile & Pauline Jidele & Young I. Irivboje, 2021. "Effect of Inadequate Electrification on Nigeria’s Economic Development and Environmental Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    18. Lei Bi & Murray Haight, 2007. "Anaerobic digestion and community development: A case study from Hainan province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(4), pages 501-521, November.
    19. Yang, Sen & Li, Qing & Gao, Yang & Zheng, Longyu & Liu, Ziduo, 2014. "Biodiesel production from swine manure via housefly larvae (Musca domestica L.)," Renewable Energy, Elsevier, vol. 66(C), pages 222-227.
    20. Coimbra-Araújo, Carlos H. & Mariane, Leidiane & Júnior, Cicero Bley & Frigo, Elisandro Pires & Frigo, Michelle Sato & Araújo, Izabela Regina Costa & Alves, Helton José, 2014. "Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 826-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:770-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.