IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v19y2013icp629-651.html
   My bibliography  Save this article

Recent developments in ejector refrigeration technologies

Author

Listed:
  • Chen, Xiangjie
  • Omer, Siddig
  • Worall, Mark
  • Riffat, Saffa

Abstract

This paper aims at providing a literature review on the recent development in ejectors, applications of ejector refrigeration systems and system performance enhancement. The paper presents useful guidelines regarding background and operating principles of ejector. A number of studies are reported and categorized in several topics including, refrigerant selections, mathematical modelling and numerical simulation of ejector system, geometric optimizations, operating conditions optimizations and combinations with other refrigeration systems. Most of the works that have been carried out recently are still limited to computer modelling, more experimental and large-scale work are needed in order to provide better understanding for the real industrial application.

Suggested Citation

  • Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
  • Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:629-651
    DOI: 10.1016/j.rser.2012.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szabolcs Varga & Armando C. Oliveira & Bogdan Diaconu, 2009. "Analysis of a solar-assisted ejector cooling system for air conditioning," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 2-8, March.
    2. Li, C.H. & Wang, R.Z. & Lu, Y.Z., 2002. "Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system," Renewable Energy, Elsevier, vol. 26(4), pages 611-622.
    3. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    4. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    5. Hong, Woo Jong & Alhussan, Khaled & Zhang, Hongfang & Garris, Charles A., 2004. "A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency," Energy, Elsevier, vol. 29(12), pages 2331-2345.
    6. Ziapour, Behrooz M. & Abbasy, Ahad, 2010. "First and second laws analysis of the heat pipe/ejector refrigeration cycle," Energy, Elsevier, vol. 35(8), pages 3307-3314.
    7. Wang, Jiangfeng & Dai, Yiping & Zhang, Taiyong & Ma, Shaolin, 2009. "Parametric analysis for a new combined power and ejector–absorption refrigeration cycle," Energy, Elsevier, vol. 34(10), pages 1587-1593.
    8. M. Worall & S. Omer & S.B. Riffat, 2011. "A hybrid jet-pump CO 2 compression system for transport refrigeration," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 249-254, April.
    9. Ersoy, H. Kursad & Yalcin, Sakir & Yapici, Rafet & Ozgoren, Muammer, 2007. "Performance of a solar ejector cooling-system in the southern region of Turkey," Applied Energy, Elsevier, vol. 84(9), pages 971-983, September.
    10. Alexis, G.K. & Karayiannis, E.K., 2005. "A solar ejector cooling system using refrigerant R134a in the Athens area," Renewable Energy, Elsevier, vol. 30(9), pages 1457-1469.
    11. Abdulateef, J.M. & Sopian, K. & Alghoul, M.A. & Sulaiman, M.Y., 2009. "Review on solar-driven ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1338-1349, August.
    12. Yu, Jianlin & Du, Zhenxing, 2010. "Theoretical study of a transcritical ejector refrigeration cycle with refrigerant R143a," Renewable Energy, Elsevier, vol. 35(9), pages 2034-2039.
    13. Wang, Jiangfeng & Dai, Yiping & Gao, Lin, 2008. "Parametric analysis and optimization for a combined power and refrigeration cycle," Applied Energy, Elsevier, vol. 85(11), pages 1071-1085, November.
    14. Sun, Da-Wen, 1996. "Variable geometry ejectors and their applications in ejector refrigeration systems," Energy, Elsevier, vol. 21(10), pages 919-929.
    15. Sankarlal, T. & Mani, A., 2007. "Experimental investigations on ejector refrigeration system with ammonia," Renewable Energy, Elsevier, vol. 32(8), pages 1403-1413.
    16. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    3. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    4. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2017. "Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage," Applied Energy, Elsevier, vol. 190(C), pages 600-611.
    5. Abed, Azher M. & Alghoul, M.A. & Sopian, K. & Majdi, Hasan Sh. & Al-Shamani, Ali Najah & Muftah, A.F., 2017. "Enhancement aspects of single stage absorption cooling cycle: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1010-1045.
    6. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    7. Yu, Jianlin & Du, Zhenxing, 2010. "Theoretical study of a transcritical ejector refrigeration cycle with refrigerant R143a," Renewable Energy, Elsevier, vol. 35(9), pages 2034-2039.
    8. Yan, Jia & Cai, Wenjian & Zhao, Lei & Li, Yanzhong & Lin, Chen, 2013. "Performance evaluation of a combined ejector-vapor compression cycle," Renewable Energy, Elsevier, vol. 55(C), pages 331-337.
    9. Meyer, A.J. & Harms, T.M. & Dobson, R.T., 2009. "Steam jet ejector cooling powered by waste or solar heat," Renewable Energy, Elsevier, vol. 34(1), pages 297-306.
    10. Diaconu, Bogdan M. & Varga, Szabolcs & Oliveira, Armando C., 2011. "Numerical simulation of a solar-assisted ejector air conditioning system with cold storage," Energy, Elsevier, vol. 36(2), pages 1280-1291.
    11. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    12. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    13. Zhang, Kun & Chen, Xue & Markides, Christos N. & Yang, Yong & Shen, Shengqiang, 2016. "Evaluation of ejector performance for an organic Rankine cycle combined power and cooling system," Applied Energy, Elsevier, vol. 184(C), pages 404-412.
    14. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    15. Zhang, Sheng & Cheng, Yong, 2017. "Performance improvement of an ejector cooling system with thermal pumping effect (ECSTPE) by doubling evacuation chambers in parallel," Applied Energy, Elsevier, vol. 187(C), pages 675-688.
    16. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    17. Almahmoud, Hamad A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Ben Mansour, Ridha & Alkhulaifi, Yousif M., 2021. "Energetic performance analysis of a solar-driven hybrid ejector cooling and humidification-dehumidification desalination system," Energy, Elsevier, vol. 230(C).
    18. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    19. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger," Applied Energy, Elsevier, vol. 121(C), pages 245-251.
    20. Chong, Daotong & Hu, Mengqi & Chen, Weixiong & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2014. "Experimental and numerical analysis of supersonic air ejector," Applied Energy, Elsevier, vol. 130(C), pages 679-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:629-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.