IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i7p4461-4464.html
   My bibliography  Save this article

A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain

Author

Listed:
  • San Cristóbal, José Ramón

Abstract

The capacity expansion planning problem of the renewable energy industry involves decisions regarding the optimal mix of different plant types, locations where each plant should be built, and capacity expansion decisions over the planning horizon for each plant. The aim of this paper is to develop a goal programming model, based on a multi-source multi-sink network, in order to locate five renewable energy plants for electric generation in five places located in the autonomous region of Cantabria, in the north of Spain. As different types of plants can be placed in each location, the goal is to locate one plant in each place, maximizing the number of plants that are matched with comparable locations, in a way that the total deviations from goals are minimized.

Suggested Citation

  • San Cristóbal, José Ramón, 2012. "A goal programming model for the optimal mix and location of renewable energy plants in the north of Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4461-4464.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4461-4464
    DOI: 10.1016/j.rser.2012.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haralambopoulos, D.A. & Polatidis, H., 2003. "Renewable energy projects: structuring a multi-criteria group decision-making framework," Renewable Energy, Elsevier, vol. 28(6), pages 961-973.
    2. Goumas, M. & Lygerou, V., 2000. "An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects," European Journal of Operational Research, Elsevier, vol. 123(3), pages 606-613, June.
    3. Aras, Haydar & Erdoğmuş, Şenol & Koç, Eylem, 2004. "Multi-criteria selection for a wind observation station location using analytic hierarchy process," Renewable Energy, Elsevier, vol. 29(8), pages 1383-1392.
    4. Oliveira, Carla & Antunes, Carlos Henggeler, 2004. "A multiple objective model to deal with economy-energy-environment interactions," European Journal of Operational Research, Elsevier, vol. 153(2), pages 370-385, March.
    5. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    6. Jaber, J.O. & Jaber, Q.M. & Sawalha, S.A. & Mohsen, M.S., 2008. "Evaluation of conventional and renewable energy sources for space heating in the household sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 278-289, January.
    7. Mladineo, N. & Margeta, J. & Brans, J.P. & Mareschal, B., 1987. "Multicriteria ranking of alternative locations for small scale hydro plants," European Journal of Operational Research, Elsevier, vol. 31(2), pages 215-222, August.
    8. Kahraman, Cengiz & Kaya, İhsan & Cebi, Selcuk, 2009. "A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process," Energy, Elsevier, vol. 34(10), pages 1603-1616.
    9. Beccali, M. & Cellura, M. & Mistretta, M., 2003. "Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology," Renewable Energy, Elsevier, vol. 28(13), pages 2063-2087.
    10. Pohekar, S.D. & Ramachandran, M., 2004. "Multi-criteria evaluation of cooking energy alternatives for promoting parabolic solar cooker in India," Renewable Energy, Elsevier, vol. 29(9), pages 1449-1460.
    11. Cavallaro, Fausto, 2010. "Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems," Applied Energy, Elsevier, vol. 87(2), pages 496-503, February.
    12. Koroneos, C. & Michailidis, M. & Moussiopoulos, N., 2004. "Multi-objective optimization in energy systems: the case study of Lesvos Island, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 91-100, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    2. Michael Godfrey & Andrew Manikas, 2014. "Integrating Sustainability Into A Goal Programming Exercise," Business Education and Accreditation, The Institute for Business and Finance Research, vol. 6(1), pages 45-54.
    3. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    2. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    3. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    4. San Cristóbal, J.R., 2011. "Multi-criteria decision-making in the selection of a renewable energy project in spain: The Vikor method," Renewable Energy, Elsevier, vol. 36(2), pages 498-502.
    5. Chang, Ching-Ter, 2015. "Multi-choice goal programming model for the optimal location of renewable energy facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 379-389.
    6. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    7. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    8. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    9. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    10. Athanasios P. Vavatsikos & Efstratios Tsesmetzis & Georgios Koulinas & Dimitrios Koulouriotis, 2022. "A robust group decision making framework using fuzzy TOPSIS and Monte Carlo simulation for wind energy projects multicriteria evaluation," Operational Research, Springer, vol. 22(5), pages 6055-6073, November.
    11. Doukas, Haris, 2013. "Modelling of linguistic variables in multicriteria energy policy support," European Journal of Operational Research, Elsevier, vol. 227(2), pages 227-238.
    12. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    13. Mousavi, M. & Gitinavard, H. & Mousavi, S.M., 2017. "A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 774-787.
    14. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    15. Firozjaei, Mohammad Karimi & Nematollahi, Omid & Mijani, Naeim & Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Toomanian, Ara, 2019. "An integrated GIS-based Ordered Weighted Averaging analysis for solar energy evaluation in Iran: Current conditions and future planning," Renewable Energy, Elsevier, vol. 136(C), pages 1130-1146.
    16. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    17. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    18. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    19. Dongxiao Niu & Hao Zhen & Min Yu & Keke Wang & Lijie Sun & Xiaomin Xu, 2020. "Prioritization of Renewable Energy Alternatives for China by Using a Hybrid FMCDM Methodology with Uncertain Information," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    20. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:7:p:4461-4464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.