IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3789-3800.html
   My bibliography  Save this article

Technical and economic performance of residential solar water heating in the United States

Author

Listed:
  • Cassard, Hannah
  • Denholm, Paul
  • Ong, Sean

Abstract

This paper examines the regional, technical, and economic performance of residential rooftop solar water heating (SWH) technology in the U.S. It focuses on the application of SWH to consumers in the U.S. currently using electricity for water heating, which currently uses over 120 billion kWh per year. The variation in electrical energy savings due to water heating use, inlet water temperature and solar resource is estimated and applied to determine the regional “break-even” cost of SWH where the life-cycle cost of SWH is equal the life-cycle energy savings. For a typical residential consumer, a SWH system will reduce water heating energy demand by 50–85%, or a savings of 1600–2600kWh per year. For the largest 1000 electric utilities serving residential customers in the United States as of 2008, this corresponds to an annual electric bill savings range of about $100 to over $300, reflecting the large range in residential electricity prices. This range in electricity prices, along with a variety of incentives programs corresponds to a break-even cost of SWH in the United States varying by more than a factor of five (from less than $2250/system to over $10,000/system excluding Hawaii and Alaska), despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). We also consider the relationships between collector area and technical performance, SWH price and solar fraction (percent of daily energy requirements supplied by the SWH system) and examine the key drivers behind break-even costs.

Suggested Citation

  • Cassard, Hannah & Denholm, Paul & Ong, Sean, 2011. "Technical and economic performance of residential solar water heating in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3789-3800.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3789-3800
    DOI: 10.1016/j.rser.2011.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211100253X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandrasekar, B. & Kandpal, T.C., 2004. "Techno-economic evaluation of domestic solar water heating systems in India," Renewable Energy, Elsevier, vol. 29(3), pages 319-332.
    2. Gastli, Adel & Charabi, Yassine, 2011. "Solar water heating initiative in Oman energy saving and carbon credits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1851-1856, May.
    3. Hirst, Eric & Carney, Janet & O'Neal, Dennis, 1979. "Alternative technologies for US residential water heating : Energy savings and economic benefits," Energy Policy, Elsevier, vol. 7(4), pages 307-320, December.
    4. Allen, S.R. & Hammond, G.P. & Harajli, H.A. & McManus, M.C. & Winnett, A.B., 2010. "Integrated appraisal of a Solar Hot Water system," Energy, Elsevier, vol. 35(3), pages 1351-1362.
    5. Kaldellis, J.K. & Kavadias, K.A. & Spyropoulos, G., 2005. "Investigating the real situation of Greek solar water heating market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 499-520, October.
    6. Chang, K.C. & Lin, W.M. & Lee, T.S. & Chung, K.M., 2009. "Local market of solar water heaters in Taiwan: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2605-2612, December.
    7. Jaisankar, S. & Ananth, J. & Thulasi, S. & Jayasuthakar, S.T. & Sheeba, K.N., 2011. "A comprehensive review on solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3045-3050, August.
    8. Zhai, X.Q. & Wang, R.Z., 2008. "Experiences on solar heating and cooling in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1110-1128, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    2. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Ma, Ben & Song, Guojun & Smardon, Richard C. & Chen, Jing, 2014. "Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation," Energy Policy, Elsevier, vol. 72(C), pages 23-34.
    4. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    5. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    6. Sinethemba Peter & Njabulo Kambule & Stephen Tangwe & Kowiyou Yessoufou, 2022. "Assessing the Feasibility and the Potential of Implementing Solar Water Heaters in Dimbaza, a Township in Eastern Cape, South Africa," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    7. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    8. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    9. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    10. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    11. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    12. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    13. Arif Yurtsev & Glenn P Jenkins, 2016. "An economic analysis of policies for promoting economically efficient water heater systems operating under seasonal climatic conditions," Energy & Environment, , vol. 27(2), pages 227-240, March.
    14. Friedrich Ferrer, Philippe Alberto, 2017. "Average economic performance of solar water heaters for low density dwellings across South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 507-515.
    15. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Li, Dayao & He, Jiang & Li, Lin, 2016. "A review of renewable energy applications in buildings in the hot-summer and warm-winter region of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 327-336.
    17. de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
    18. Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
    19. Rout, Auroshis & Sahoo, Sudhansu S. & Thomas, Sanju, 2018. "Risk modeling of domestic solar water heater using Monte Carlo simulation for east-coastal region of India," Energy, Elsevier, vol. 145(C), pages 548-556.
    20. Naik, Hardik & Baredar, Prashant & Kumar, Anil, 2017. "Medium temperature application of concentrated solar thermal technology: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 369-378.
    21. Karki, Saroj & Haapala, Karl R. & Fronk, Brian M., 2019. "Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers," Applied Energy, Elsevier, vol. 254(C).
    22. Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Sustainable Development for Solar Heating Systems in Taiwan," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    23. Sinethemba Peter & Njabulo Kambule & Stephen Tangwe & Kowiyou Yessoufou, 2022. "Quantification of the Impact of Solar Water Heating and Influence of Its Potential Utilization through Strategic Campaign: Case Study in Dimbaza, South Africa," Energies, MDPI, vol. 15(21), pages 1-14, November.
    24. Sanders, Kelly T. & Webber, Michael E., 2015. "Evaluating the energy and CO2 emissions impacts of shifts in residential water heating in the United States," Energy, Elsevier, vol. 81(C), pages 317-327.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Badi, A.H. & Albadi, M.H., 2012. "Domestic solar water heating system in Oman: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5727-5731.
    2. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    3. Pan, Tze-Chin & Kao, Jehng-Jung & Wong, Chih-Po, 2012. "Effective solar radiation based benefit and cost analyses for solar water heater development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1874-1882.
    4. Ma, Ben & Song, Guojun & Smardon, Richard C. & Chen, Jing, 2014. "Diffusion of solar water heaters in regional China: Economic feasibility and policy effectiveness evaluation," Energy Policy, Elsevier, vol. 72(C), pages 23-34.
    5. Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Sustainable Development for Solar Heating Systems in Taiwan," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    6. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    7. Qiu, Shoufeng & Ruth, Matthias & Ghosh, Sanchari, 2015. "Evacuated tube collectors: A notable driver behind the solar water heater industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 580-588.
    8. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    9. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    10. Wei-Min Lin & Kai-Chun Fan & Keh-Chin Chang & Kung-Ming Chung, 2013. "Dissemination of Solar Water Heaters in Taiwan: The Case of Remote Islands," Energies, MDPI, vol. 6(10), pages 1-13, October.
    11. Singh, Ramkishore & Lazarus, Ian J. & Souliotis, Manolis, 2016. "Recent developments in integrated collector storage (ICS) solar water heaters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 270-298.
    12. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    13. Chang, K.C. & Lin, W.M. & Lee, T.S. & Chung, K.M., 2009. "Local market of solar water heaters in Taiwan: Review and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2605-2612, December.
    14. Chang, Keh-Chin & Lin, Wei-Min & Lee, Tsong-Sheng & Chung, Kung-Ming, 2011. "Subsidy programs on diffusion of solar water heaters: Taiwan's experience," Energy Policy, Elsevier, vol. 39(2), pages 563-567, February.
    15. Abd-ur-Rehman, Hafiz M. & Al-Sulaiman, Fahad A., 2016. "Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 336-349.
    16. Friedrich Ferrer, Philippe Alberto, 2017. "Average economic performance of solar water heaters for low density dwellings across South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 507-515.
    17. Nasirov, S. & Carredano, N. & Agostini, C.A. & Silva, C., 2021. "Public perception and adoption of Solar Water Heating systems in Chile: The role of supply side income tax credits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Rout, Auroshis & Sahoo, Sudhansu S. & Thomas, Sanju, 2018. "Risk modeling of domestic solar water heater using Monte Carlo simulation for east-coastal region of India," Energy, Elsevier, vol. 145(C), pages 548-556.
    19. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    20. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.

    More about this item

    Keywords

    Solar water heating;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3789-3800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.