IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p729-736.html
   My bibliography  Save this article

Renewable and non-renewable energy status in Iran: Art of know-how and technology-gaps

Author

Listed:
  • Ghorashi, Amir Hossein
  • Rahimi, Abdulrahim

Abstract

This paper reviews the present energy status in Islamic Republic of Iran with an emphasis on utilization of environmentally friendly energy resources. The paper reveals the huge energy losses due to technological gaps and absence of relevant art of know-how in conventional energy industries. It also includes some critical issues effecting the efficient operation of Renewable Energy Converting Systems (RECS) having specific site and climate dependency. The environmentally friendly scaled energy balance presented in this paper is self explaining for energy policy makers to achieve a suitable scenario based on various positions of scale pointer which may alter depending on implementation level of advanced technologies and relevant art of know-how. The paper, besides being informative in achieving optimal energy prospects in Iran, also provides useful quid lines to energy planners not only at home but also in other Asian/Middle Eastern countries having similar alternative energy scenarios.

Suggested Citation

  • Ghorashi, Amir Hossein & Rahimi, Abdulrahim, 2011. "Renewable and non-renewable energy status in Iran: Art of know-how and technology-gaps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 729-736, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:729-736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00324-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    2. Tokimatsu, Koji & Fujino, Jun'ichi & Konishi, Satoshi & Ogawa, Yuichi & Yamaji, Kenji, 2003. "Role of nuclear fusion in future energy systems and the environment under future uncertainties," Energy Policy, Elsevier, vol. 31(8), pages 775-797, June.
    3. Ghorashi, Amir Hossien, 2007. "Prospects of nuclear power plants for sustainable energy development in Islamic Republic of Iran," Energy Policy, Elsevier, vol. 35(3), pages 1643-1647, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    2. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    3. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Guohua Feng & Chuan Wang & Apostolos Serletis, 2018. "Shadow prices of $$\hbox {CO}_{2}$$ CO 2 emissions at US electric utilities: a random-coefficient, random-directional-vector directional output distance function approach," Empirical Economics, Springer, vol. 54(1), pages 231-258, February.
    5. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    6. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    7. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    8. Ding, Song & Tao, Zui & Zhang, Huahan & Li, Yao, 2022. "Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model," Energy, Elsevier, vol. 239(PA).
    9. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    10. Marimuthu, C. & Kirubakaran, V., 2013. "Carbon pay back period for solar and wind energy project installed in India: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 80-90.
    11. Anders Skonhoft & Bjart Holtsmark, 2014. "The Norwegian support and subsidy of electric cars. Should it be adopted by other countries?," Working Paper Series 15814, Department of Economics, Norwegian University of Science and Technology.
    12. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    13. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    14. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    15. Daniele Lerede & Chiara Bustreo & Francesco Gracceva & Yolanda Lechón & Laura Savoldi, 2020. "Analysis of the Effects of Electrification of the Road Transport Sector on the Possible Penetration of Nuclear Fusion in the Long-Term European Energy Mix," Energies, MDPI, vol. 13(14), pages 1-25, July.
    16. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    17. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    18. Komakech, A.J. & Sundberg, C. & Jönsson, H. & Vinnerås, B., 2015. "Life cycle assessment of biodegradable waste treatment systems for sub-Saharan African cities," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 100-110.
    19. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    20. Byun, Hyunsuk & Shin, Jungwoo & Lee, Chul-Yong, 2018. "Using a discrete choice experiment to predict the penetration possibility of environmentally friendly vehicles," Energy, Elsevier, vol. 144(C), pages 312-321.

    More about this item

    Keywords

    Iran Energy Status;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:729-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.