IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v129y2020ics1364032120302045.html
   My bibliography  Save this article

Energy self-supply estimation in intermediate cities

Author

Listed:
  • Barragán-Escandón, Edgar A.
  • Zalamea-León, Esteban F.
  • Terrados-Cepeda, Julio
  • Vanegas-Peralta, P.F.

Abstract

Cities are responsible for more than three quarters of greenhouse gas emissions due to their intensive use of fossil resources. Hence, proposals to modify the current urban energy model have been established. The comprehensive inclusion of renewable energies in the urban area of the intermediate city of Cuenca will be analysed. In previous studies, it was established that five renewable technologies have the greatest opportunities for implementation in the city. Therefore, this research proposes a methodological approach to establish the impact of the inclusion of each of these technologies, and the Long-range Energy Alternative Planning (LEAP) model is used to establish the urban energy balance. Through the construction of scenarios and the evaluation of energy balances, it is concluded that it is possible to reduce the energy flows that enter the city by applying these five energy sources. The results indicate a self-supply potential of up to 33.9% of the total urban consumption; however, due to the type of local energy matrix, only 13% of this energy could be consumed under current conditions, and the remained would be surplus power. Photovoltaic (PV) technology has a significantly higher potential than the other technologies as it exceeds the electricity demand 3.19-fold. The conclusion is that the conversion of currently fuel-powered services to electrical power is necessary to maximize clean self-generation.

Suggested Citation

  • Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:rensus:v:129:y:2020:i:c:s1364032120302045
    DOI: 10.1016/j.rser.2020.109913
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120302045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carapellucci, Roberto & Giordano, Lorena & Pierguidi, Fabio, 2015. "Techno-economic evaluation of small-hydro power plants: Modelling and characterisation of the Abruzzo region in Italy," Renewable Energy, Elsevier, vol. 75(C), pages 395-406.
    2. Shen, Yanwen & Linville, Jessica L. & Urgun-Demirtas, Meltem & Mintz, Marianne M. & Snyder, Seth W., 2015. "An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 346-362.
    3. Han Vandevyvere & Sven Stremke, 2012. "Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective," Sustainability, MDPI, vol. 4(6), pages 1-20, June.
    4. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    5. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong, 2010. "Solar water heaters in China: A new day dawning," Energy Policy, Elsevier, vol. 38(1), pages 383-391, January.
    6. Dixon, Tim & Eames, Malcolm & Britnell, Judith & Watson, Georgia Butina & Hunt, Miriam, 2014. "Urban retrofitting: Identifying disruptive and sustaining technologies using performative and foresight techniques," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 131-144.
    7. González, L.G. & Siavichay, E. & Espinoza, J.L., 2019. "Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 309-318.
    8. Poggi, Francesca & Firmino, Ana & Amado, Miguel, 2018. "Planning renewable energy in rural areas: Impacts on occupation and land use," Energy, Elsevier, vol. 155(C), pages 630-640.
    9. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    10. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    11. Nigim, K. & Munier, N. & Green, J., 2004. "Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources," Renewable Energy, Elsevier, vol. 29(11), pages 1775-1791.
    12. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    13. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    14. Bennett, M. & Newborough, M., 2001. "Auditing energy use in cities," Energy Policy, Elsevier, vol. 29(2), pages 125-134, January.
    15. Caldarelli, Carlos Eduardo & Gilio, Leandro, 2018. "Expansion of the sugarcane industry and its effects on land use in São Paulo: Analysis from 2000 through 2015," Land Use Policy, Elsevier, vol. 76(C), pages 264-274.
    16. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    17. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    18. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    19. Kusre, B.C. & Baruah, D.C. & Bordoloi, P.K. & Patra, S.C., 2010. "Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River basin in Assam (India)," Applied Energy, Elsevier, vol. 87(1), pages 298-309, January.
    20. Ponce-Jara, M.A. & Castro, M. & Pelaez-Samaniego, M.R. & Espinoza-Abad, J.L. & Ruiz, E., 2018. "Electricity sector in Ecuador: An overview of the 2007–2017 decade," Energy Policy, Elsevier, vol. 113(C), pages 513-522.
    21. Makarichi, Luke & Jutidamrongphan, Warangkana & Techato, Kua-anan, 2018. "The evolution of waste-to-energy incineration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 812-821.
    22. Galo, Joaquim J.M. & Macedo, Maria N.Q. & Almeida, Luiz A.L. & Lima, Antonio C.C., 2014. "Criteria for smart grid deployment in Brazil by applying the Delphi method," Energy, Elsevier, vol. 70(C), pages 605-611.
    23. Ursula Eicker & Martin Klein, 2014. "Large-scale renewable energy integration within energy-efficient urban areas: results from three German case studies," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 9(3), pages 202-213.
    24. Peng, Jinqing & Lu, Lin, 2013. "Investigation on the development potential of rooftop PV system in Hong Kong and its environmental benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 149-162.
    25. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    26. Nadaletti, W.C. & Cremonez, P.A. & de Souza, S.N.M. & Bariccatti, R.A. & Belli Filho, P. & Secco, D., 2015. "Potential use of landfill biogas in urban bus fleet in the Brazilian states: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 277-283.
    27. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    28. Abbas Hassan & Hyowon Lee, 2015. "The paradox of the sustainable city: definitions and examples," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1267-1285, December.
    29. Kosa, Preeyaphorn & Kulworawanichpong, Thanatchai & Srivoramas, Rerkchai & Chinkulkijniwat, Avirut & Horpibulsuk, Suksun & Teaumroong, Neung, 2011. "The potential micro-hydropower projects in Nakhon Ratchasima province, Thailand," Renewable Energy, Elsevier, vol. 36(3), pages 1133-1137.
    30. Zambrano-Asanza, Sergio & Zalamea-León, Esteban F. & Barragán-Escandón, Edgar A. & Parra-González, Alejandro, 2019. "Urban photovoltaic potential estimation based on architectural conditions, production-demand matching, storage and the incorporation of new eco-efficient loads," Renewable Energy, Elsevier, vol. 142(C), pages 224-238.
    31. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "Potential and cost of electricity generation from human and animal waste in Spain," Renewable Energy, Elsevier, vol. 35(2), pages 498-505.
    32. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonia Cevallos-Escandón & Edgar Antonio Barragan-Escandón & Esteban Zalamea-León & Xavier Serrano-Guerrero & Julio Terrados-Cepeda, 2023. "Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador," Energies, MDPI, vol. 16(14), pages 1-14, July.
    2. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    3. Xiaoqing Huang & Xiaoyong Lu & Yuqi Sun & Jingui Yao & Wenxing Zhu, 2022. "A Comprehensive Performance Evaluation of Chinese Energy Supply Chain under “Double-Carbon” Goals Based on AHP and Three-Stage DEA," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    4. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    2. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    3. Antonio Barragán-Escandón & Jonathan Miguel Olmedo Ruiz & Jonnathan David Curillo Tigre & Esteban F. Zalamea-León, 2020. "Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    4. Antonia Cevallos-Escandón & Edgar Antonio Barragan-Escandón & Esteban Zalamea-León & Xavier Serrano-Guerrero & Julio Terrados-Cepeda, 2023. "Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador," Energies, MDPI, vol. 16(14), pages 1-14, July.
    5. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    6. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    7. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    8. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    9. Zambrano-Asanza, Sergio & Zalamea-León, Esteban F. & Barragán-Escandón, Edgar A. & Parra-González, Alejandro, 2019. "Urban photovoltaic potential estimation based on architectural conditions, production-demand matching, storage and the incorporation of new eco-efficient loads," Renewable Energy, Elsevier, vol. 142(C), pages 224-238.
    10. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    11. Aroonrat, Kanit & Wongwises, Somchai, 2015. "Current status and potential of hydro energy in Thailand: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 70-78.
    12. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    15. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    16. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    17. Soulis, Konstantinos X. & Manolakos, Dimitris & Anagnostopoulos, John & Papantonis, Dimitris, 2016. "Development of a geo-information system embedding a spatially distributed hydrological model for the preliminary assessment of the hydropower potential of historical hydro sites in poorly gauged areas," Renewable Energy, Elsevier, vol. 92(C), pages 222-232.
    18. Silva, Leo Jaymee de Vilas Boas da & Santos, Ivan Felipe Silva dos & Mensah, Johnson Herlich Roslee & Gonçalves, Andriani Tavares Tenório & Barros, Regina Mambeli, 2020. "Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential," Renewable Energy, Elsevier, vol. 149(C), pages 1386-1394.
    19. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    20. Tamm, Ottar & Tamm, Toomas, 2020. "Verification of a robust method for sizing and siting the small hydropower run-of-river plant potential by using GIS," Renewable Energy, Elsevier, vol. 155(C), pages 153-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:129:y:2020:i:c:s1364032120302045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.