IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v114y2019ic9.html
   My bibliography  Save this article

Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts

Author

Listed:
  • Zhang, Heng
  • Li, Hu
  • Hu, Yulin
  • Venkateswara Rao, Kasanneni Tirumala
  • Xu, Chunbao (Charles)
  • Yang, Song

Abstract

Dwindling oil reserves, concerns over climate changes related to CO2 emissions, and increasing demands on energy have intensified the interest and efforts in the utilization of bio-renewable resources for biofuels and value-added chemicals. In line with these, promising bio-based ester fuels including biodiesel (fatty acid methyl ester, FAME) and alkyl levulinate (AL) have been manufactured directly from sustainable biomass resources through the environmentally-friendly process using functional catalysts. In order to comply with the principles of green and sustainable chemistry, heterogeneous catalysts rather than the conventional homogeneous catalysts have been primarily considered. Furthermore, in comparison with mono-functional catalysts, heterogeneous bifunctional catalysts can not only enhance the selectivity toward the target products via tandem/sequential-type reactions, but also integrate the correlative catalytic transformations and product isolation into a one-pot process. The present work overviews recent advances in the catalytic valorization of non-food oils and liquid biomass for biodiesels via simultaneous transesterification and esterification, as well as catalytic transformation of solid cellulosic biomass into AL over solid bifunctional catalysts. Particular attention is paid on the performance of various bifunctional acid-base and Brønsted-Lewis acidic catalysts. Plausible reaction mechanisms are also discussed in this review involving various reaction pathways, which provide guidance for the design of appropriate heterogeneous bifunctional catalysts for biodiesel and AL production.

Suggested Citation

  • Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  • Handle: RePEc:eee:rensus:v:114:y:2019:i:c:9
    DOI: 10.1016/j.rser.2019.109296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119305040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, H.V. & Juan, J.C. & Taufiq-Yap, Y.H., 2015. "Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 74(C), pages 124-132.
    2. Costa, Jorge Alberto Vieira & Freitas, Bárbara Catarina Bastos de & Lisboa, Cristiane Reinaldo & Santos, Thaisa Duarte & Brusch, Lucio Renato de Fraga & de Morais, Michele Greque, 2019. "Microalgal biorefinery from CO2 and the effects under the Blue Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 58-65.
    3. Liu, Jie & Wang, Xue-Qian & Yang, Bei-Bei & Liu, Chun-Ling & Xu, Chun-Li & Dong, Wen-Sheng, 2018. "Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite," Renewable Energy, Elsevier, vol. 120(C), pages 231-240.
    4. Kang, Shimin & Fu, Jinxia & Zhang, Gang, 2018. "From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 340-362.
    5. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    6. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    7. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    8. Syazwani, Osman Nur & Rashid, Umer & Mastuli, Mohd Sufri & Taufiq-Yap, Yun Hin, 2019. "Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata)," Renewable Energy, Elsevier, vol. 131(C), pages 187-196.
    9. Kaur, Navjot & Ali, Amjad, 2015. "Preparation and application of Ce/ZrO2−TiO2/SO42− as solid catalyst for the esterification of fatty acids," Renewable Energy, Elsevier, vol. 81(C), pages 421-431.
    10. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    11. Chouhan, A.P. Singh & Sarma, A.K., 2011. "Modern heterogeneous catalysts for biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4378-4399.
    12. Antenucci, Andrea & Sansavini, Giovanni, 2019. "Extensive CO2 recycling in power systems via Power-to-Gas and network storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 33-43.
    13. Endalew, Abebe K. & Kiros, Yohannes & Zanzi, Rolando, 2011. "Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO)," Energy, Elsevier, vol. 36(5), pages 2693-2700.
    14. Kaur, Mandeep & Malhotra, Rashi & Ali, Amjad, 2018. "Tungsten supported Ti/SiO2 nanoflowers as reusable heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 116(PA), pages 109-119.
    15. Ahmad, Fiaz & Silva, Edson Luiz & Varesche, Maria Bernadete Amâncio, 2018. "Hydrothermal processing of biomass for anaerobic digestion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 108-124.
    16. Zhang, Heng & Li, Hu & Pan, Hu & Wang, Anping & Souzanchi, Sadra & Xu, Chunbao (Charles) & Yang, Song, 2018. "Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production," Applied Energy, Elsevier, vol. 223(C), pages 416-429.
    17. Pan, Hu & Liu, Xiaofang & Zhang, Heng & Yang, Kaili & Huang, Shan & Yang, Song, 2017. "Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion," Renewable Energy, Elsevier, vol. 107(C), pages 245-252.
    18. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    19. Bajwa, Dilpreet S. & Peterson, Tyler & Sharma, Neeta & Shojaeiarani, Jamileh & Bajwa, Sreekala G., 2018. "A review of densified solid biomass for energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 296-305.
    20. Li, Ji & Peng, Xiao & Luo, Meng & Zhao, Chun-Jian & Gu, Cheng-Bo & Zu, Yuan-Gang & Fu, Yu-Jie, 2014. "Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted–Lewis acidic ionic liquid," Applied Energy, Elsevier, vol. 115(C), pages 438-444.
    21. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    22. Banković–Ilić, Ivana B. & Miladinović, Marija R. & Stamenković, Olivera S. & Veljković, Vlada B., 2017. "Application of nano CaO–based catalysts in biodiesel synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 746-760.
    23. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Rajaei, Kourosh & Tarighi, Sara, 2018. "Oxidation of bio-renewable glycerol to value-added chemicals through catalytic and electro-chemical processes," Applied Energy, Elsevier, vol. 230(C), pages 1347-1379.
    24. Shahbaz, Muhammad & yusup, Suzana & Inayat, Abrar & Patrick, David Onoja & Ammar, Muhammad, 2017. "The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 468-476.
    25. Ma, Yingqun & Wang, Qunhui & Gao, Zhen & Sun, Xiaohong & Wang, Nan & Niu, Ruxuan & Ma, Hongzhi, 2016. "Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism," Renewable Energy, Elsevier, vol. 86(C), pages 643-650.
    26. Peng, Lincai & Lin, Lu & Li, Hui & Yang, Qiulin, 2011. "Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts," Applied Energy, Elsevier, vol. 88(12), pages 4590-4596.
    27. Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Ong, Hwai-Chyuan & Lee, Keat-Teong, 2018. "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 235-253.
    28. Avhad, M.R. & Marchetti, J.M., 2015. "A review on recent advancement in catalytic materials for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 696-718.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    3. Xie, Wenlei & Li, Jiangbo, 2023. "Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    5. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    6. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    7. Li, Mantian & Chen, Jinyi & Huang, Youjie & Li, Meichen & Lin, Xiaocheng & Qiu, Ting, 2020. "Reusable and efficient heterogeneous catalysts for biodiesel production from free fatty acids and oils: Self-solidifying hybrid ionic liquids," Energy, Elsevier, vol. 211(C).
    8. Ruatpuia, Joseph V.L. & Changmai, Bishwajit & Pathak, Ayush & Alghamdi, Lana A. & Kress, Thomas & Halder, Gopinath & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2023. "Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study," Renewable Energy, Elsevier, vol. 206(C), pages 597-608.
    9. Laskar, Ikbal Bahar & Changmai, Bishwajit & Gupta, Rajat & Shi, Da & Jenkinson, Kellie J. & Wheatley, Andrew E.H. & Rokhum, Lalthazuala, 2021. "A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 173(C), pages 415-421.
    10. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    11. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    13. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    14. Liu, Kang & Wang, Rui & Yu, Meiqing, 2018. "An efficient, recoverable solid base catalyst of magnetic bamboo charcoal: Preparation, characterization, and performance in biodiesel production," Renewable Energy, Elsevier, vol. 127(C), pages 531-538.
    15. de Aguiar, Viviane Marques & de Souza, Andrea Luzia F. & Galdino, Fernanda S. & da Silva, Michelle Martha C. & Teixeira, Viviane Gomes & Lachter, Elizabeth R., 2017. "Sulfonated poly(divinylbenzene) and poly(styrene-divinylbenzene) as catalysts for esterification of fatty acids," Renewable Energy, Elsevier, vol. 114(PB), pages 725-732.
    16. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    17. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    18. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    19. Guliani, Disha & Sobti, Amit & Toor, Amrit Pal, 2022. "Titania impregnated mesoporous MCM-48 as a solid photo-catalyst for the synthesis of methyl palmitate: Reaction mechanism and kinetics," Renewable Energy, Elsevier, vol. 191(C), pages 405-417.
    20. Wang, Quan & Wenlei Xie, & Guo, Lihong, 2022. "Molybdenum and zirconium oxides supported on KIT-6 silica: A recyclable composite catalyst for one–pot biodiesel production from simulated low-quality oils," Renewable Energy, Elsevier, vol. 187(C), pages 907-922.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:114:y:2019:i:c:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.