IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v107y2019icp374-387.html
   My bibliography  Save this article

Clear sky solar irradiance models: A review of seventy models

Author

Listed:
  • Antonanzas-Torres, F.
  • Urraca, R.
  • Polo, J.
  • Perpiñán-Lamigueiro, O.
  • Escobar, R.

Abstract

Clear sky solar irradiance parametric models seek to simplify the atmospheric attenuation with relatively simple parameterizations in order to estimate solar irradiance under clear sky conditions, avoiding the use of computationally expensive radiative transfer models. These models are particularly useful when estimating solar irradiation with satellite retrievals. Due to the great number of clear sky parametric models, it is somehow complicated to decide the choice of model to be selected. This article continues the work of previous reviews of clear sky models adding new models up to seventy described models for diffuse, beam and global components. A model benchmark is performed with ancillary solar irradiance data from two meteorological stations belonging to the Baseline Surface Radiation Network (BSRN) and also ancillary aerosol data from the Aerosol Robotic Network (AERONET). Results show great differences in performance between models, leading to priorize the use of only a few of them.

Suggested Citation

  • Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
  • Handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:374-387
    DOI: 10.1016/j.rser.2019.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119301261
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2013. "Accuracy analysis for fifty-four clear-sky solar radiation models using routine hourly global irradiance measurements in Romania," Renewable Energy, Elsevier, vol. 55(C), pages 85-103.
    2. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    3. Nijegorodov, N. & Adedoyin, J.A. & Devan, K.R.S., 1997. "A new analytical-empirical model for the instantaneous diffuse radiation and experimental investigation of its validity," Renewable Energy, Elsevier, vol. 11(3), pages 341-350.
    4. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Perpiñán-Lamigueiro, O., 2013. "Evaluation and improvement of empirical models of global solar irradiation: Case study northern Spain," Renewable Energy, Elsevier, vol. 60(C), pages 604-614.
    5. Antonanzas-Torres, F. & Cañizares, F. & Perpiñán, O., 2013. "Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 248-261.
    6. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
    7. Polo, J. & Antonanzas-Torres, F. & Vindel, J.M. & Ramirez, L., 2014. "Sensitivity of satellite-based methods for deriving solar radiation to different choice of aerosol input and models," Renewable Energy, Elsevier, vol. 68(C), pages 785-792.
    8. Badescu, Viorel & Dumitrescu, Alexandru, 2014. "Simple models to compute solar global irradiance from the CMSAF product Cloud Fractional Coverage," Renewable Energy, Elsevier, vol. 66(C), pages 118-131.
    9. Bashahu, M. & Laplaze, D., 1994. "An atmospheric model for computing solar radiation," Renewable Energy, Elsevier, vol. 4(4), pages 455-458.
    10. Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeom, Jong-Min & Deo, Ravinesh C. & Adamwoski, Jan F. & Chae, Taebyeong & Kim, Dong-Su & Han, Kyung-Soo & Kim, Do-Yong, 2020. "Exploring solar and wind energy resources in North Korea with COMS MI geostationary satellite data coupled with numerical weather prediction reanalysis variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    3. Moldovan, Camelia Liliana & Păltănea, Radu & Visa, Ion, 2020. "Improvement of clear sky models for direct solar irradiance considering turbidity factor variable during the day," Renewable Energy, Elsevier, vol. 161(C), pages 559-569.
    4. Ruiz-Arias, José A., 2021. "Aerosol transmittance for clear-sky solar irradiance models: Review and validation of an accurate universal parameterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    6. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    7. Han, Jen-Yu & Vohnicky, Petr, 2022. "An optimized approach for mapping solar irradiance in a mid-low latitude region based on a site-adaptation technique using Himawari-8 satellite imageries," Renewable Energy, Elsevier, vol. 187(C), pages 603-617.
    8. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Carreira-Fontao, V., 2022. "A methodology for an optimal design of ground-mounted photovoltaic power plants," Applied Energy, Elsevier, vol. 314(C).
    9. Ruiz-Arias, José A., 2023. "SPARTA: Solar parameterization for the radiative transfer of the cloudless atmosphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    11. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    12. Barbón, A. & Fortuny Ayuso, P. & Bayón, L. & Fernández-Rubiera, J.A., 2020. "Predicting beam and diffuse horizontal irradiance using Fourier expansions," Renewable Energy, Elsevier, vol. 154(C), pages 46-57.
    13. Nollas, Fernando M. & Salazar, German A. & Gueymard, Christian A., 2023. "Quality control procedure for 1-minute pyranometric measurements of global and shadowband-based diffuse solar irradiance," Renewable Energy, Elsevier, vol. 202(C), pages 40-55.
    14. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    15. Gardashov, Rauf & Eminov, Murad & Kara, Gökhan & Emecen Kara, Esma Gül & Mammadov, Tural & Huseynova, Xedce, 2020. "The optimum daily direction of solar panels in the highlands, derived by an analytical method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    16. Ruiz-Arias, José A., 2022. "Spectral integration of clear-sky atmospheric transmittance: Review and worldwide performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Paulescu, Eugenia & Paulescu, Marius, 2021. "A new clear sky solar irradiance model," Renewable Energy, Elsevier, vol. 179(C), pages 2094-2103.
    18. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Acord, Brendan & Wang, Peng & Engerer, Nicholas A., 2019. "Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 550-570.
    3. Badescu, Viorel & Gueymard, Christian A. & Cheval, Sorin & Oprea, Cristian & Baciu, Madalina & Dumitrescu, Alexandru & Iacobescu, Flavius & Milos, Ioan & Rada, Costel, 2012. "Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1636-1656.
    4. Antonanzas-Torres, F. & Sanz-Garcia, A. & Martínez-de-Pisón, F.J. & Antonanzas, J. & Perpiñán-Lamigueiro, O. & Polo, J., 2014. "Towards downscaling of aerosol gridded dataset for improving solar resource assessment, an application to Spain," Renewable Energy, Elsevier, vol. 71(C), pages 534-544.
    5. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    6. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    7. Akarslan, Emre & Hocaoglu, Fatih Onur & Edizkan, Rifat, 2018. "Novel short term solar irradiance forecasting models," Renewable Energy, Elsevier, vol. 123(C), pages 58-66.
    8. Garniwa, Pranda M.P. & Lee, Hyunjin, 2023. "Intercomparison of the parameterized Linke turbidity factor in deriving global horizontal irradiance," Renewable Energy, Elsevier, vol. 212(C), pages 285-298.
    9. Mazorra Aguiar, L. & Polo, J. & Vindel, J.M. & Oliver, A., 2019. "Analysis of satellite derived solar irradiance in islands with site adaptation techniques for improving the uncertainty," Renewable Energy, Elsevier, vol. 135(C), pages 98-107.
    10. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    11. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    12. Urraca, R. & Martinez-de-Pison, E. & Sanz-Garcia, A. & Antonanzas, J. & Antonanzas-Torres, F., 2017. "Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1098-1113.
    13. Gueymard, Christian A. & Ruiz-Arias, José Antonio, 2015. "Validation of direct normal irradiance predictions under arid conditions: A review of radiative models and their turbidity-dependent performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 379-396.
    14. Kostić, Rastko & Mikulović, Jovan, 2017. "The empirical models for estimating solar insolation in Serbia by using meteorological data on cloudiness," Renewable Energy, Elsevier, vol. 114(PB), pages 1281-1293.
    15. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    16. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    17. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    18. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    19. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    20. Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "A Novel Strategy for Converting Conventional Structures into Net-Zero-Energy Buildings without Destruction," Sustainability, MDPI, vol. 15(14), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:107:y:2019:i:c:p:374-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.