IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v104y2019icp38-53.html
   My bibliography  Save this article

A review on economic and technical operation of active distribution systems

Author

Listed:
  • Ghadi, M. Jabbari
  • Ghavidel, Sahand
  • Rajabi, Amin
  • Azizivahed, Ali
  • Li, Li
  • Zhang, Jiangfeng

Abstract

Along with the advent of restructuring in power systems, considerable integration of renewable energy resources has motivated the transition of traditional distribution networks (DNs) toward new active ones. In the meanwhile, rapid technology advances have provided great potentials for future bulk utilization of generation units as well as the energy storage (ES) systems in the distribution section. This paper aims to present a comprehensive review of recent advancements in the operation of active distribution systems (ADSs) from the viewpoint of operational time-hierarchy. To be more specific, this time-hierarchy consists of two stages, and at the first stage of this time-hierarchy, four major economic factors, by which the operation of traditional passive DNs is evolved to new active DNs, are described. Then the second stage of the time-hierarchy refers to technical management and power quality correction of ADSs in terms of static, dynamic and transient periods. In the end, some required modeling and control developments for the optimal operation of ADSs are discussed. As opposed to previous review papers, potential applications of devices in the ADS are investigated considering their operational time-intervals. Since some of the compensating devices, storage units and generating sources may have different applications regarding the time scale of their utilization, this paper considers real scenario system operations in which components of the network are firstly scheduled for the specified period ahead; then their deviations of operating status from reference points are modified during three time-intervals covering static, dynamic and transient periods.

Suggested Citation

  • Ghadi, M. Jabbari & Ghavidel, Sahand & Rajabi, Amin & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "A review on economic and technical operation of active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 38-53.
  • Handle: RePEc:eee:rensus:v:104:y:2019:i:c:p:38-53
    DOI: 10.1016/j.rser.2019.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119300103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    2. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    3. Lv, Tianguang & Ai, Qian, 2016. "Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources," Applied Energy, Elsevier, vol. 163(C), pages 408-422.
    4. McDonald, Jim, 2008. "Adaptive intelligent power systems: Active distribution networks," Energy Policy, Elsevier, vol. 36(12), pages 4346-4351, December.
    5. Shaoyun Ge & Li Xu & Hong Liu & Mingxin Zhao, 2014. "Reliability Assessment of Active Distribution System Using Monte Carlo Simulation Method," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, May.
    6. Zehir, Mustafa Alparslan & Batman, Alp & Sonmez, Mehmet Ali & Font, Aytug & Tsiamitros, Dimitrios & Stimoniaris, Dimitris & Kollatou, Theofano & Bagriyanik, Mustafa & Ozdemir, Aydogan & Dialynas, Evan, 2017. "Impacts of microgrids with renewables on secondary distribution networks," Applied Energy, Elsevier, vol. 201(C), pages 308-319.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agostini, Marco & Bertolini, Marina & Coppo, Massimiliano & Fontini, Fulvio, 2021. "The participation of small-scale variable distributed renewable energy sources to the balancing services market," Energy Economics, Elsevier, vol. 97(C).
    2. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Mehrdad Tahmasebi & Jagadeesh Pasupuleti & Fatemeh Mohamadian & Mohammad Shakeri & Josep M. Guerrero & M. Reyasudin Basir Khan & Muhammad Shahzad Nazir & Amir Safari & Najmeh Bazmohammadi, 2021. "Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    5. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    8. Zhang, Jingrui & Zhou, Yulu & Li, Zhuoyun & Cai, Junfeng, 2021. "Three-level day-ahead optimal scheduling framework considering multi-stakeholders in active distribution networks: Up-to-down approach," Energy, Elsevier, vol. 219(C).
    9. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    10. Wu, Y.J. & Liang, X.Y. & Huang, T. & Lin, Z.W. & Li, Z.X. & Hossain, Mohammad Farhad, 2021. "A hierarchical framework for renewable energy sources consumption promotion among microgrids through two-layer electricity prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdizadeh, Ali & Taghizadegan, Navid & Salehi, Javad, 2018. "Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management," Applied Energy, Elsevier, vol. 211(C), pages 617-630.
    2. Ghadi, Mojtaba Jabbari & Rajabi, Amin & Ghavidel, Sahand & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2019. "From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Makrygiorgou, Despoina I. & Alexandridis, Antonio T., 2018. "Distributed stabilizing modular control for stand-alone microgrids," Applied Energy, Elsevier, vol. 210(C), pages 925-935.
    4. Johansson, Petter & Vendel, Martin & Nuur, Cali, 2020. "Integrating distributed energy resources in electricity distribution systems: An explorative study of challenges facing DSOs in Sweden," Utilities Policy, Elsevier, vol. 67(C).
    5. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    6. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    7. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    8. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    9. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    10. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    11. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Karthikeyan Nainar & Florin Iov, 2020. "Smart Meter Measurement-Based State Estimation for Monitoring of Low-Voltage Distribution Grids," Energies, MDPI, vol. 13(20), pages 1-18, October.
    13. Hao Xiao & Wei Pei & Zuomin Dong & Li Kong & Dan Wang, 2018. "Application and Comparison of Metaheuristic and New Metamodel Based Global Optimization Methods to the Optimal Operation of Active Distribution Networks," Energies, MDPI, vol. 11(1), pages 1-29, January.
    14. Moura, Ricardo & Brito, Miguel Centeno, 2019. "Prosumer aggregation policies, country experience and business models," Energy Policy, Elsevier, vol. 132(C), pages 820-830.
    15. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    16. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    17. Oleksandr Miroshnyk & Oleksandr Moroz & Taras Shchur & Andrii Chepizhnyi & Mohamed Qawaqzeh & Sławomir Kocira, 2023. "Investigation of Smart Grid Operation Modes with Electrical Energy Storage System," Energies, MDPI, vol. 16(6), pages 1-13, March.
    18. Darius Corbier & Frédéric Gonand & Marie Bessec, 2015. "Impacts of decentralised power generation on distribution networks: a statistical typology of European countries," Working Papers 1509, Chaire Economie du climat.
    19. Cherrelle Eid & Rudi Hakvoort & Martin de Jong, 2016. "Global trends in the political economy of smart grids: A tailored perspective on 'smart' for grids in transition," WIDER Working Paper Series 022, World Institute for Development Economic Research (UNU-WIDER).
    20. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:104:y:2019:i:c:p:38-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.