IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v87y2016ip1p193-202.html
   My bibliography  Save this article

Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility

Author

Listed:
  • Leitner, Viktoria
  • Lindorfer, Johannes

Abstract

The objective of this paper is to evaluate a combined bioethanol and biomethane production from wheat straw applying process network synthesis for maximised energy yield per ton lignocellulosic biomass input. Experimental results in combination with literature data were implemented in process synthesis software for energy optimisation. Wheat straw was steam exploded at different pretreatment conditions on laboratory scale. Glucose and ethanol yields as well as specific biogas yields of different solid and liquid fractions were determined via batch-experiments. Preferable pretreatment conditions differ between biogas and bioethanol production. The optimal process configuration was found to consist of direct biogas production from steam explosion pretreated straw at 170 °C for 20 min combined with bioethanol production from straw pretreated at 200 °C for 20 min. This process results in a purified methane yield of 7892 MJ and a purified ethanol yield of 964 MJ per ton untreated straw input.

Suggested Citation

  • Leitner, Viktoria & Lindorfer, Johannes, 2016. "Evaluation of technology structure based on energy yield from wheat straw for combined bioethanol and biomethane facility," Renewable Energy, Elsevier, vol. 87(P1), pages 193-202.
  • Handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:193-202
    DOI: 10.1016/j.renene.2015.09.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    3. Mshandete, Anthony & Björnsson, Lovisa & Kivaisi, Amelia K. & Rubindamayugi, M.S.T. & Mattiasson, Bo, 2006. "Effect of particle size on biogas yield from sisal fibre waste," Renewable Energy, Elsevier, vol. 31(14), pages 2385-2392.
    4. Kaparaju, Prasad & Serrano, María & Angelidaki, Irini, 2010. "Optimization of biogas production from wheat straw stillage in UASB reactor," Applied Energy, Elsevier, vol. 87(12), pages 3779-3783, December.
    5. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    6. Ekman, Anna & Wallberg, Ola & Joelsson, Elisabeth & Börjesson, Pål, 2013. "Possibilities for sustainable biorefineries based on agricultural residues – A case study of potential straw-based ethanol production in Sweden," Applied Energy, Elsevier, vol. 102(C), pages 299-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Kamil Witaszek & Magdalena Piekutowska & Małgorzata Idzior-Haufa & Agnieszka Wawrzyniak, 2021. "Degree of Biomass Conversion in the Integrated Production of Bioethanol and Biogas," Energies, MDPI, vol. 14(22), pages 1-16, November.
    2. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    3. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Horschig, Thomas & Adams, P.W.R. & Gawel, Erik & Thrän, Daniela, 2018. "How to decarbonize the natural gas sector: A dynamic simulation approach for the market development estimation of renewable gas in Germany," Applied Energy, Elsevier, vol. 213(C), pages 555-572.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    2. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.
    3. Liu, Yunyun & Xu, Jingliang & Zhang, Yu & Yuan, Zhenhong & He, Minchao & Liang, Cuiyi & Zhuang, Xinshu & Xie, Jun, 2015. "Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF," Energy, Elsevier, vol. 90(P1), pages 1199-1205.
    4. Chen, Xiaohua & Zhang, YaLei & Gu, Yu & Liu, Zhanguang & Shen, Zheng & Chu, Huaqiang & Zhou, Xuefei, 2014. "Enhancing methane production from rice straw by extrusion pretreatment," Applied Energy, Elsevier, vol. 122(C), pages 34-41.
    5. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
    6. Alessandra Cesaro & Vincenzo Belgiorno, 2015. "Combined Biogas and Bioethanol Production: Opportunities and Challenges for Industrial Application," Energies, MDPI, vol. 8(8), pages 1-24, August.
    7. Weiser, Christian & Zeller, Vanessa & Reinicke, Frank & Wagner, Bernhard & Majer, Stefan & Vetter, Armin & Thraen, Daniela, 2014. "Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany," Applied Energy, Elsevier, vol. 114(C), pages 749-762.
    8. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    9. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    10. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    11. Whittaker, Carly & Borrion, Aiduan Li & Newnes, Linda & McManus, Marcelle, 2014. "The renewable energy directive and cereal residues," Applied Energy, Elsevier, vol. 122(C), pages 207-215.
    12. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    13. Momoh, O.L.Y. & Ouki, S., 2018. "Development of a novel fractal-like kinetic model for elucidating the effect of particle size on the mechanism of hydrolysis and biogas yield from ligno-cellulosic biomass," Renewable Energy, Elsevier, vol. 118(C), pages 71-83.
    14. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    15. Dar, R.A. & Parmar, M. & Dar, E.A. & Sani, R.K. & Phutela, U.G., 2021. "Biomethanation of agricultural residues: Potential, limitations and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    18. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    19. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    20. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:87:y:2016:i:p1:p:193-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.