IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp332-338.html
   My bibliography  Save this article

Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage

Author

Listed:
  • Okazaki, Toru
  • Shirai, Yasuyuki
  • Nakamura, Taketsune

Abstract

Present wind power is intermittent and cannot be used as the baseload energy source. Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage named Wind powered Thermal Energy System (WTES) is conducted. The thermal energy is generated from the rotating energy directly at the top of the tower by the heat generator, which is a kind of simple and light electric brake. The rest of the system is the same as the tower type concentrated solar power (CSP). The cost estimation suggests that the energy cost of WTES is less than that of the conventional wind power, which must be supported by the backup thermal plants and grid enhancement. The light heat generator reduces some issues of wind power such as noise and vibration.

Suggested Citation

  • Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:332-338
    DOI: 10.1016/j.renene.2015.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115003079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wipo, 2014. "World Intellectual Property Indicators, 2014 edition," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2014:941, April.
    2. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    2. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    3. Fan, Di & Li, Yi & Chen, Liang, 2017. "Configuring innovative societies: The crossvergent role of cultural and institutional varieties," Technovation, Elsevier, vol. 66, pages 43-56.
    4. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    5. Sunil Kanwar & Bronwyn H. Hall, 2015. "The Market Value of R&D in Weak Innovation Regimes: Evidence from India," NBER Working Papers 21196, National Bureau of Economic Research, Inc.
    6. Haroon Bhorat & Ravi Kanbur & Natasha Mayet, 2013. "A Note on Measuring the Depth of Minimum Wage Violation," LABOUR, CEIS, vol. 27(2), pages 192-197, June.
    7. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    8. Peeter Pikk & Marko Viiding, 2013. "The dangers of marginal cost based electricity pricing," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 13(1), pages 49-62, July.
    9. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    10. Xia Fan & Wenjie Liu & Guilong Zhu, 2017. "Scientific linkage and technological innovation capabilities: international comparisons of patenting in the solar energy industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 117-138, April.
    11. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    12. Stefano Comino & Fabio M. Manenti & NIkolaus Thumm, 2017. "The Role of Patents in Information and Communication Technologies (ICTs). A survey of the Literature," "Marco Fanno" Working Papers 0212, Dipartimento di Scienze Economiche "Marco Fanno".
    13. Joan Batalla-Bejerano & Elisa Trujillo-Baute, 2015. "Analysing the sensitivity of electricity system operational costs to deviations in supply and demand," Working Papers 2015/8, Institut d'Economia de Barcelona (IEB).
    14. Arias-Gaviria, Jessica & Arango-Aramburo, Santiago & Lamadrid L, Alberto J., 2022. "The effects of high penetrations of renewable energy sources in cycles for electricity markets: An experimental analysis," Energy Policy, Elsevier, vol. 166(C).
    15. Sun, Sunny Li & Chen, Victor Z. & Sunny, Sanwar A. & Chen, Jie, 2019. "Venture capital as an innovation ecosystem engineer in an emerging market," International Business Review, Elsevier, vol. 28(5), pages 1-1.
    16. Wunsch-Vincent, Sacha & Kashcheeva, Mila & Zhou, Hao, 2015. "International patenting by Chinese residents: Constructing a database of Chinese foreign-oriented patent families," China Economic Review, Elsevier, vol. 36(C), pages 198-219.
    17. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
    18. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    19. Chen, Yihsu & Zhang, Duan & Takashima, Ryuta, 2019. "Carbon emission forensic in the energy sector: Is it worth the effort?," Energy Policy, Elsevier, vol. 128(C), pages 868-878.
    20. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:332-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.