IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp109-116.html
   My bibliography  Save this article

Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates

Author

Listed:
  • Siqueira, Marcos Rechi
  • Reginatto, Valeria

Abstract

Lignocellulosic materials are potential renewable substrates for fermentative H2 production; however, most of the methods available to hydrolyze these materials produce fermentation inhibitors. This study assessed the effect of three different groups of inhibitors on fermentative H2 production by a mixed culture: (1) acetic acid; (2) furan derivatives, such as furfural and 5-hydroxymethylfurfural (HMF); and (3) phenolic monomers, such as vanillin, syringaldehyde, and 4-hydroxybenzoic acid (HBA). Conduction of batch assays in the presence of glucose and different concentrations of inhibitors helped to assess how the inhibitors affected the kinetic parameters of the modified Gompertz model (Rm, Hmax, and λ). The concentrations of inhibitors that reduced 50% of the maximum H2 production rate (IC50) were estimated. In terms of IC50, HBA provided the largest inhibition, 0.38 g L−1, which is a novel result in the literature. HBA was followed by HMF and furfural, 0.48 and 0.62 g L−1, respectively. Vanillin, syringaldehyde, and acetic acid at 0.71; 1.05; and 5.14 g L−1 provided the same inhibition level, respectively. Knowledge about the degree of inhibition of these compounds shall contribute to sustainable H2 production from lignocellulosic substrates.

Suggested Citation

  • Siqueira, Marcos Rechi & Reginatto, Valeria, 2015. "Inhibition of fermentative H2 production by hydrolysis byproducts of lignocellulosic substrates," Renewable Energy, Elsevier, vol. 80(C), pages 109-116.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:109-116
    DOI: 10.1016/j.renene.2015.01.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000889
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
    2. Chaubey, Rashmi & Sahu, Satanand & James, Olusola O. & Maity, Sudip, 2013. "A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 443-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Sá, Lívian Ribeiro Vasconcelos & Faber, Mariana de Oliveira & da Silva, Ayla Sant’Ana & Cammarota, Magali Christe & Ferreira-Leitão, Viridiana Santana, 2020. "Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments," Renewable Energy, Elsevier, vol. 146(C), pages 2408-2415.
    2. Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Akobi, Chinaza & Yeo, Hyeongu & Hafez, Hisham & Nakhla, George, 2016. "Single-stage and two-stage anaerobic digestion of extruded lignocellulosic biomass," Applied Energy, Elsevier, vol. 184(C), pages 548-559.
    4. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.
    5. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Hu, Bin-Bin & Wang, Ji-Lian & Wang, Yu-Tao & Zhu, Ming-Jun, 2019. "Specify the individual and synergistic effects of lignocellulose-derived inhibitors on biohydrogen production and inhibitory mechanism research," Renewable Energy, Elsevier, vol. 140(C), pages 397-406.
    7. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    8. Lin, Richen & Deng, Chen & Cheng, Jun & Murphy, Jerry D., 2020. "Low concentrations of furfural facilitate biohydrogen production in dark fermentation using Enterobacter aerogenes," Renewable Energy, Elsevier, vol. 150(C), pages 23-30.
    9. Basak, Bikram & Jeon, Byong-Hun & Kim, Tae Hyun & Lee, Jae-Cheol & Chatterjee, Pradip Kumar & Lim, Hankwon, 2020. "Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Elizabeth Rodríguez-Félix & Silvia Maribel Contreras-Ramos & Gustavo Davila-Vazquez & Jacobo Rodríguez-Campos & Erika Nahomy Marino-Marmolejo, 2018. "Identification and Quantification of Volatile Compounds Found in Vinasses from Two Different Processes of Tequila Production," Energies, MDPI, vol. 11(3), pages 1-18, February.
    11. Pontes, Rita & Romaní, Aloia & Michelin, Michele & Domingues, Lucília & Teixeira, José & Nunes, João, 2018. "Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds," Renewable Energy, Elsevier, vol. 128(PA), pages 20-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    3. Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
    4. Aghajani Delavar, Mojtaba & Wang, Junye, 2022. "Three-dimensional modeling of photo fermentative biohydrogen generation in a microbioreactor," Renewable Energy, Elsevier, vol. 181(C), pages 1034-1045.
    5. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    6. Te Zhao & Chusheng Chen & Hong Ye, 2021. "CFD Simulation of Hydrogen Generation and Methane Combustion Inside a Water Splitting Membrane Reactor," Energies, MDPI, vol. 14(21), pages 1-17, November.
    7. Garcia, Gabriel & Arriola, Emmanuel & Chen, Wei-Hsin & De Luna, Mark Daniel, 2021. "A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability," Energy, Elsevier, vol. 217(C).
    8. Blessing Chidinma Nwachukwu & Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2021. "Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability," Agriculture, MDPI, vol. 11(1), pages 1-18, January.
    9. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    10. Ismail, Mohamed M. & Dincer, Ibrahim, 2023. "A new renewable energy based integrated gasification system for hydrogen production from plastic wastes," Energy, Elsevier, vol. 270(C).
    11. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    13. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    14. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    15. Kumar, G. & Bakonyi, P. & Periyasamy, S. & Kim, S.H. & Nemestóthy, N. & Bélafi-Bakó, K., 2015. "Lignocellulose biohydrogen: Practical challenges and recent progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 728-737.
    16. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    17. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    18. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    19. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    20. Wei, Shuxia & Li, Zichen & Sun, Yong & Zhang, Jiemei & Ge, Yuanyuan & Li, Zhili, 2022. "A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    More about this item

    Keywords

    Hydrolysates; Lignocellulosic materials; Inhibition; Fermentative H2 production;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:109-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.