IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp123-133.html
   My bibliography  Save this article

Optimal green energy management in Jeju, South Korea – On-grid and off-grid electrification

Author

Listed:
  • Kim, Heetae
  • Baek, Seoin
  • Park, Eunil
  • Chang, Hyun Joon

Abstract

“Green Growth” and “Sustainability” are now keywords for industrial growth engines. This research examines the economic, environmental, and technological feasibility of hybrid systems by simulating a system composed of renewable energy, an existing grid system, and a diesel generator on Jeju Island in South Korea.

Suggested Citation

  • Kim, Heetae & Baek, Seoin & Park, Eunil & Chang, Hyun Joon, 2014. "Optimal green energy management in Jeju, South Korea – On-grid and off-grid electrification," Renewable Energy, Elsevier, vol. 69(C), pages 123-133.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:123-133
    DOI: 10.1016/j.renene.2014.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114001475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demiroren, A. & Yilmaz, U., 2010. "Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 323-333, January.
    2. Liu, Gang & Rasul, M.G. & Amanullah, M.T.O. & Khan, M.M.K., 2012. "Techno-economic simulation and optimization of residential grid-connected PV system for the Queensland climate," Renewable Energy, Elsevier, vol. 45(C), pages 146-155.
    3. Shaahid, S.M. & Elhadidy, M.A., 2008. "Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 488-503, February.
    4. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    5. Karakoulidis, K. & Mavridis, K. & Bandekas, D.V. & Adoniadis, P. & Potolias, C. & Vordos, N., 2011. "Techno-economic analysis of a stand-alone hybrid photovoltaic-diesel–battery-fuel cell power system," Renewable Energy, Elsevier, vol. 36(8), pages 2238-2244.
    6. Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hybrid renewable power systems for mobile telephony base stations in developing countries," Renewable Energy, Elsevier, vol. 51(C), pages 419-425.
    7. Ashourian, M.H. & Cherati, S.M. & Mohd Zin, A.A. & Niknam, N. & Mokhtar, A.S. & Anwari, M., 2013. "Optimal green energy management for island resorts in Malaysia," Renewable Energy, Elsevier, vol. 51(C), pages 36-45.
    8. Dursun, Bahtiyar, 2012. "Determination of the optimum hybrid renewable power generating systems for Kavakli campus of Kirklareli University, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6183-6190.
    9. Chang, Hyun-Joon, 2003. "New horizons for Korean energy industry--shifting paradigms and challenges ahead," Energy Policy, Elsevier, vol. 31(11), pages 1073-1084, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
    2. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    3. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2015. "Optimal Hybrid Renewable Power System for an Emerging Island of South Korea: The Case of Yeongjong Island," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    4. Baek, Seoin & Park, Eunil & Kim, Min-Gil & Kwon, Sang Jib & Kim, Ki Joon & Ohm, Jay Y. & del Pobil, Angel P., 2016. "Optimal renewable power generation systems for Busan metropolitan city in South Korea," Renewable Energy, Elsevier, vol. 88(C), pages 517-525.
    5. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    6. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    7. Jinwoo Bae & Soojung Lee & Heetae Kim, 2021. "Comparative study on the economic feasibility of nanogrid and microgrid electrification: The case of Jeju Island, South Korea," Energy & Environment, , vol. 32(1), pages 168-188, February.
    8. Heetae Kim & Seoin Baek & Kyu Ha Choi & Dojin Kim & Seongmin Lee & Dahill Kim & Hyun Joon Chang, 2016. "Comparative Analysis of On- and Off-Grid Electrification: The Case of Two South Korean Islands," Sustainability, MDPI, vol. 8(4), pages 1-13, April.
    9. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    10. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    11. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    12. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
    13. Park, Eunil & Kwon, Sang Jib, 2016. "Solutions for optimizing renewable power generation systems at Kyung-Hee University׳s Global Campus, South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 439-449.
    14. Hosseinalizadeh, Ramin & Shakouri G, Hamed & Amalnick, Mohsen Sadegh & Taghipour, Peyman, 2016. "Economic sizing of a hybrid (PV–WT–FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 139-150.
    15. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.
    16. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    17. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    18. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    19. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    20. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:123-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.