IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v68y2014icp366-371.html
   My bibliography  Save this article

Optimization of biogas from chicken droppings with Cymbopogon citratus

Author

Listed:
  • Owamah, H.I.
  • Alfa, M.I.
  • Dahunsi, S.O.

Abstract

Optimization of biogas production and quality from chicken droppings by anaerobic co-digestion with Cymbopogon citratus was investigated. The anaerobic digestions of chicken droppings, chicken droppings with C. citratus as well as C. citratus alone were carried out for a period of 30 days at an average ambient temperature of 33.1 ± 2 °C using identical reactors (A–C) respectively. Results obtained indicate that chicken droppings produced on the average 1.8 L/kg/day of biogas, co-digestion of chicken droppings and C. citratus produced 1.3 L/kg/day of biogas while C. citratus alone produced 1.0 L/kg/day with estimated average methane content of 41.71%, 66.20% and 71.95% for reactors A–C respectively. The water boiling rates of biogas from chicken droppings, chicken droppings with C. citratus, and C. citratus alone were 0.079 L/min, 0.091 L/min and 0.12 L/min respectively, after the gases were scrubbed with water and slaked lime. It was observed that notwithstanding the higher biogas volumetric yield from chicken droppings digested alone, the co-digestion of chicken droppings with C. citratus had better gas quality with respect to the methane content present and cooking rate. This study has shown that the methane content of biogas from animal manure substrates could be improved by co-digestion with energy plants.

Suggested Citation

  • Owamah, H.I. & Alfa, M.I. & Dahunsi, S.O., 2014. "Optimization of biogas from chicken droppings with Cymbopogon citratus," Renewable Energy, Elsevier, vol. 68(C), pages 366-371.
  • Handle: RePEc:eee:renene:v:68:y:2014:i:c:p:366-371
    DOI: 10.1016/j.renene.2014.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400086X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gómez, X. & Cuetos, M.J. & Cara, J. & Morán, A. & García, A.I., 2006. "Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes," Renewable Energy, Elsevier, vol. 31(12), pages 2017-2024.
    2. Parawira, W & Murto, M & Zvauya, R & Mattiasson, B, 2004. "Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves," Renewable Energy, Elsevier, vol. 29(11), pages 1811-1823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    2. Dahunsi, S.O., 2019. "Liquefaction of pineapple peel: Pretreatment and process optimization," Energy, Elsevier, vol. 185(C), pages 1017-1031.
    3. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    4. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Mahdy, Ahmed & Wandera, Simon M. & Yin, Dongmin & Dong, Renjie, 2020. "Improved high solid anaerobic digestion of chicken manure by moderate in situ ammonia stripping and its relation to metabolic pathway," Renewable Energy, Elsevier, vol. 146(C), pages 2380-2389.
    5. Owamah, H.I. & Enaboifo, M.A. & Izinyon, O.C., 2014. "Treatment of wastewater from raw rubber processing industry using water lettuce macrophyte pond and the reuse of its effluent as biofertilizer," Agricultural Water Management, Elsevier, vol. 146(C), pages 262-269.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyridon Achinas & Yu Li & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "Biogas Potential from the Anaerobic Digestion of Potato Peels: Process Performance and Kinetics Evaluation," Energies, MDPI, vol. 12(12), pages 1-16, June.
    2. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    3. Wang, Jun & Xue, Qingwen & Guo, Ting & Mei, Zili & Long, Enshen & Wen, Qian & Huang, Wei & Luo, Tao & Huang, Ruyi, 2018. "A review on CFD simulating method for biogas fermentation material fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 64-73.
    4. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    5. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    6. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.
    7. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    8. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    9. Nges, Ivo Achu & Liu, Jing, 2010. "Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 35(10), pages 2200-2206.
    10. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    11. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    12. Di Maria, Francesco & Micale, Caterina & Sordi, Alessio, 2014. "Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC," Renewable Energy, Elsevier, vol. 66(C), pages 461-467.
    13. P. Elaiyaraju & N. Partha, 2016. "Studies on biogas production by anaerobic process using agroindustrial wastes," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(2), pages 73-82.
    14. Alkaya, Emrah & Demirer, Göksel N., 2011. "Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors," Renewable Energy, Elsevier, vol. 36(3), pages 971-975.
    15. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.
    16. Abiodun O. Jegede & Grietje Zeeman & Harry Bruning, 2019. "Development of an Optimised Chinese Dome Digester Enables Smaller Reactor Volumes; Pilot Scale Performance," Energies, MDPI, vol. 12(11), pages 1-15, June.
    17. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    18. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    19. Andalib, Mehran & Elbeshbishy, Elsayed & Mustafa, Nizar & Hafez, Hisham & Nakhla, George & Zhu, Jesse, 2014. "Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage," Renewable Energy, Elsevier, vol. 71(C), pages 276-285.
    20. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:68:y:2014:i:c:p:366-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.