IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp707-713.html
   My bibliography  Save this article

Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle

Author

Listed:
  • Uris, María
  • Linares, José Ignacio
  • Arenas, Eva

Abstract

Biomass-fueled Organic Rankine Cycle power plants in a cogeneration topping layout have been operated in Central Europe since 2000. These plants are usually integrated into a district heating system and located near to the villages whose thermal and electric energy demands are to be covered. In this paper, a technical and economic feasibility assessment of this kind of plants is presented. The energy performance has been analyzed in different scenarios. Four different typical organic fluids (two silicone oils, toluene and isopentane), subcritical and supercritical cycles and the inclusion of a recuperator have been considered. Thermal and electric energy are sold to a nearby village at competitive market prices. Spanish market prices have been used as a reference. No subsidies have been considered in the case of electricity, so that the Spanish average power pool market price has been considered. The size of the plant, the cost of biomass and the annual operation schedule have been considered for the economical analysis. According to the technical analysis, hexamethyldisiloxane (HMDSO) in recuperative cycles has turned out to be the best choice in both the subcritical and the supercritical layouts, due to its favorable global behavior (harmfulness, reliability and efficiency). The economic assessment shows a lower profitability in the case of supercritical cycles because of the fact that the increase in electric efficiency implies a decrease in the amount of produced useful heat, which is the main source of cash inflow. The size of the plant can be established according to the cost of fuel in order to achieve a similar profitability (i.e. a 1 MWe plant fueled with biomass priced at 5.5 €/MWhth has a similar internal rate of return than a 2 MWe plant fueled with biomass priced at 15.5 €/MWhth). In order to obtain a 5% internal rate of return with subcritical recuperative plants, the annual operation time must be 2750 h in the case of a 2 MWe plant fueled with biomass priced at 5.5 €/MWhth and 5500 h in the case of a 1 MWe plant fueled with biomass priced at 15.5 €/MWhth.

Suggested Citation

  • Uris, María & Linares, José Ignacio & Arenas, Eva, 2014. "Techno-economic feasibility assessment of a biomass cogeneration plant based on an Organic Rankine Cycle," Renewable Energy, Elsevier, vol. 66(C), pages 707-713.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:707-713
    DOI: 10.1016/j.renene.2014.01.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114000512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleh, Bahaa & Koglbauer, Gerald & Wendland, Martin & Fischer, Johann, 2007. "Working fluids for low-temperature organic Rankine cycles," Energy, Elsevier, vol. 32(7), pages 1210-1221.
    2. Taljan, Gregor & Verbič, Gregor & Pantoš, Miloš & Sakulin, Manfred & Fickert, Lothar, 2012. "Optimal sizing of biomass-fired Organic Rankine Cycle CHP system with heat storage," Renewable Energy, Elsevier, vol. 41(C), pages 29-38.
    3. Chen, Huijuan & Yogi Goswami, D. & Rahman, Muhammad M. & Stefanakos, Elias K., 2011. "Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion," Applied Energy, Elsevier, vol. 88(8), pages 2802-2808, August.
    4. Maraver, Daniel & Sin, Ana & Sebastián, Fernando & Royo, Javier, 2013. "Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation," Energy, Elsevier, vol. 57(C), pages 17-23.
    5. Stoppato, Anna, 2012. "Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant," Energy, Elsevier, vol. 41(1), pages 3-9.
    6. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    7. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    8. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    9. Messineo, Antonio & Volpe, Roberto & Marvuglia, Antonino, 2012. "Ligno-cellulosic biomass exploitation for power generation: A case study in sicily," Energy, Elsevier, vol. 45(1), pages 613-625.
    10. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    11. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    12. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    13. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Chunfei & Budarin, Vitaliy L. & Wang, Meihong & Sharifi, Vida & Gronnow, Mark J. & Wu, Yajue & Swithenbank, Jim & Clark, James H. & Williams, Paul T., 2015. "CO2 gasification of bio-char derived from conventional and microwave pyrolysis," Applied Energy, Elsevier, vol. 157(C), pages 533-539.
    2. Mondal, Subha & De, Sudipta, 2017. "Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic an," Energy, Elsevier, vol. 121(C), pages 832-840.
    3. Franco Cotana & Antonio Messineo & Alessandro Petrozzi & Valentina Coccia & Gianluca Cavalaglio & Andrea Aquino, 2014. "Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste," Sustainability, MDPI, vol. 6(9), pages 1-16, August.
    4. Mosaffa, A.H. & Farshi, L. Garousi, 2018. "Thermodynamic and economic assessments of a novel CCHP cycle utilizing low-temperature heat sources for domestic applications," Renewable Energy, Elsevier, vol. 120(C), pages 134-150.
    5. Kalina, Jacek & Świerzewski, Mateusz, 2019. "Identification of ORC unit operation in biomass-fired cogeneration system," Renewable Energy, Elsevier, vol. 142(C), pages 400-414.
    6. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    7. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    8. Alba Mondragón-Valero & Borja Velázquez-Martí & Domingo M. Salazar & Isabel López-Cortés, 2018. "Influence of Fertilization and Rootstocks in the Biomass Energy Characterization of Prunus dulcis (Miller)," Energies, MDPI, vol. 11(5), pages 1-12, May.
    9. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    10. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.
    11. Uris, María & Linares, José Ignacio & Arenas, Eva, 2015. "Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain," Energy, Elsevier, vol. 88(C), pages 935-945.
    12. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    13. Braimakis, Konstantinos & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Εnergy-exergy analysis of ultra-supercritical biomass-fuelled steam power plants for industrial CHP, district heating and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 252-269.
    14. Intaniwet, Akarin & Chaiyat, Nattaporn, 2017. "Levelized electricity costing per carbon dioxide intensity of an organic Rankine cycle by using a water hyacinth-municipal solid waste fuel," Energy, Elsevier, vol. 139(C), pages 76-88.
    15. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    16. Shadbahr, Jalil & Ebadian, Mahmood & Gonzales-Calienes, Giovanna & Kannangara, Miyuru & Ahmadi, Leila & Bensebaa, Farid, 2022. "Impact of waste management and conversion technologies on cost and carbon footprint - Case studies in rural and urban cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Sanne Lemmens, 2016. "Cost Engineering Techniques and Their Applicability for Cost Estimation of Organic Rankine Cycle Systems," Energies, MDPI, vol. 9(7), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    3. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    4. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    5. Song, Chongzhi & Gu, Mingyan & Miao, Zheng & Liu, Chao & Xu, Jinliang, 2019. "Effect of fluid dryness and critical temperature on trans-critical organic Rankine cycle," Energy, Elsevier, vol. 174(C), pages 97-109.
    6. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    7. Uris, María & Linares, José Ignacio & Arenas, Eva, 2015. "Size optimization of a biomass-fired cogeneration plant CHP/CCHP (Combined heat and power/Combined heat, cooling and power) based on Organic Rankine Cycle for a district network in Spain," Energy, Elsevier, vol. 88(C), pages 935-945.
    8. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    9. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    10. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    11. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    12. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    13. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    14. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    15. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    16. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    17. Bao, Junjiang & Zhao, Li, 2012. "Exergy analysis and parameter study on a novel auto-cascade Rankine cycle," Energy, Elsevier, vol. 48(1), pages 539-547.
    18. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    19. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    20. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:707-713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.