IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp915-920.html
   My bibliography  Save this article

The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield

Author

Listed:
  • Moradi, G.R.
  • Dehghani, S.
  • Khosravian, F.
  • Arjmandzadeh, A.

Abstract

In this study, transesterification of soybean oil to biodiesel using KOH in different process conditions were studied. The investigated conditions were the molar ratio of methanol/oil, catalyst amount and reaction temperature. Optimal conditions were found to be methanol/oil molar ratio, 9:1; catalyst amount, 1 wt%; reaction temperature, 60 °C. Biodiesel yield for these conditions was obtained 93.2% in 1 h. In addition, the artificial neural network has been applied to estimate the biodiesel yield. The multilayer feed forward neural network with three inputs and one output has been trained with different algorithms and different numbers of neurons in the hidden layer. The accuracy of the proposed model was found to agree nearly with the experimental results over a wide range of experimental conditions. The results clearly depict that the neural network is a powerful tool to estimate the reaction rate and the designed neural network can be used instead of approximate and complex analytical equations.

Suggested Citation

  • Moradi, G.R. & Dehghani, S. & Khosravian, F. & Arjmandzadeh, A., 2013. "The optimized operational conditions for biodiesel production from soybean oil and application of artificial neural networks for estimation of the biodiesel yield," Renewable Energy, Elsevier, vol. 50(C), pages 915-920.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:915-920
    DOI: 10.1016/j.renene.2012.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811200540X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakthivel, G. & Sivaraja, C.M. & Ikua, Bernard W., 2019. "Prediction OF CI engine performance, emission and combustion parameters using fish oil as a biodiesel by fuzzy-GA," Energy, Elsevier, vol. 166(C), pages 287-306.
    2. Vardast, Neda & Haghighi, Mohammad & Dehghani, Sahar, 2019. "Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and perform," Renewable Energy, Elsevier, vol. 132(C), pages 979-988.
    3. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    4. Silitonga, A.S. & Shamsuddin, A.H. & Mahlia, T.M.I. & Milano, Jassinne & Kusumo, F. & Siswantoro, Joko & Dharma, S. & Sebayang, A.H. & Masjuki, H.H. & Ong, Hwai Chyuan, 2020. "Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization," Renewable Energy, Elsevier, vol. 146(C), pages 1278-1291.
    5. Sakthivel, G. & Sivakumar, R. & Saravanan, N. & Ikua, Bernard W., 2017. "A decision support system to evaluate the optimum fuel blend in an IC engine to enhance the energy efficiency and energy management," Energy, Elsevier, vol. 140(P1), pages 566-583.
    6. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    7. Marina Corral Bobadilla & Roberto Fernández Martínez & Rubén Lostado Lorza & Fátima Somovilla Gómez & Eliseo P. Vergara González, 2018. "Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines," Energies, MDPI, vol. 11(11), pages 1-19, November.
    8. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    9. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    10. Vellaiyan, Suresh & Partheeban, C.M. Anand, 2020. "Combined effect of water emulsion and ZnO nanoparticle on emissions pattern of soybean biodiesel fuelled diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 1157-1166.
    11. Manieniyan, V. & Vinodhini, G. & Senthilkumar, R. & Sivaprakasam, S., 2016. "Wear element analysis using neural networks of a DI diesel engine using biodiesel with exhaust gas recirculation," Energy, Elsevier, vol. 114(C), pages 603-612.
    12. Sina Faizollahzadeh Ardabili & Bahman Najafi & Meysam Alizamir & Amir Mosavi & Shahaboddin Shamshirband & Timon Rabczuk, 2018. "Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters," Energies, MDPI, vol. 11(11), pages 1-19, October.
    13. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Dadak, Ali, 2017. "Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor," Energy, Elsevier, vol. 132(C), pages 65-78.
    14. Ricardo Gava & Dthenifer Cordeiro Santana & Mayara Favero Cotrim & Fernando Saragosa Rossi & Larissa Pereira Ribeiro Teodoro & Carlos Antonio da Silva Junior & Paulo Eduardo Teodoro, 2022. "Soybean Cultivars Identification Using Remotely Sensed Image and Machine Learning Models," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    15. Soltani, Soroush & Roodbar Shojaei, Taha & Khanian, Nasrin & Shean Yaw Choong, Thomas & Asim, Nilofar & Zhao, Yue, 2022. "Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst," Renewable Energy, Elsevier, vol. 187(C), pages 760-773.
    16. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    17. Dehghani, Sahar & Haghighi, Mohammad, 2020. "Sono-enhanced dispersion of CaO over Zr-Doped MCM-41 bifunctional nanocatalyst with various Si/Zr ratios for conversion of waste cooking oil to biodiesel," Renewable Energy, Elsevier, vol. 153(C), pages 801-812.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    4. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    5. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    6. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    7. Wu, Sheng-Ju & Shiah, Sheau-Wen & Yu, Wei-Lung, 2009. "Parametric analysis of proton exchange membrane fuel cell performance by using the Taguchi method and a neural network," Renewable Energy, Elsevier, vol. 34(1), pages 135-144.
    8. Ahmadi, Mohammadali, 2023. "Data-driven approaches for predicting wax deposition," Energy, Elsevier, vol. 265(C).
    9. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.
    10. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    11. Di Lullo, G. & Oni, A.O. & Kumar, A., 2023. "The development of complex engineering models using artificial neural network-based proxy models for life cycle assessments of energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    13. Wang, Zhangyuan & Yang, Wansheng & Qiu, Feng & Zhang, Xiangmei & Zhao, Xudong, 2015. "Solar water heating: From theory, application, marketing and research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 68-84.
    14. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    15. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    16. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    17. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    18. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    19. Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
    20. Wen, Hao & Sang, Song & Qiu, Chenhui & Du, Xiangrui & Zhu, Xiao & Shi, Qian, 2019. "A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network," Energy, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:915-920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.