IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i2p881-888.html
   My bibliography  Save this article

Optimal configuration assessment of renewable energy in Malaysia

Author

Listed:
  • Haidar, Ahmed M.A.
  • John, Priscilla N.
  • Shawal, Mohd

Abstract

This paper proposes the use of a PV–wind–diesel generator hybrid system in order to determine the optimal configuration of renewable energy in Malaysia and to compare the production cost of solar and wind power with its annual yield relevant to different regions in Malaysia namely, Johor, Sarawak, Penang and Selangor. The configuration of optimal hybrid system is selected based on the best components and sizing with appropriate operating strategy to provide a cheap, efficient, reliable and cost-effective system. The various renewable energy sources and their applicability in terms of cost and performance are analyzed. Moreover, the annual yield and cost of energy production of solar and wind energy are evaluated. The Simulations were carried out using the HOMER program based on data obtained from the Malaysian Meteorological Centre. Results show that, for Malaysia, a PV–diesel generator hybrid system is the most suitable solution in terms of economic performance and pollution. However, the cost of production of solar and wind energy proved to be cheaper and more environmentally friendly than the energy produced from diesel generators.

Suggested Citation

  • Haidar, Ahmed M.A. & John, Priscilla N. & Shawal, Mohd, 2011. "Optimal configuration assessment of renewable energy in Malaysia," Renewable Energy, Elsevier, vol. 36(2), pages 881-888.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:2:p:881-888
    DOI: 10.1016/j.renene.2010.07.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.07.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    2. Elhadidy, M.A., 2002. "Performance evaluation of hybrid (wind/solar/diesel) power systems," Renewable Energy, Elsevier, vol. 26(3), pages 401-413.
    3. Ashok, S., 2007. "Optimised model for community-based hybrid energy system," Renewable Energy, Elsevier, vol. 32(7), pages 1155-1164.
    4. McGowan, J.G. & Manwell, J.F., 1999. "Hybrid wind/PV/diesel system experiences," Renewable Energy, Elsevier, vol. 16(1), pages 928-933.
    5. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    3. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    4. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    5. Bateer Baiyin & Kotaro Tagawa & Joaquin Gutierrez, 2020. "Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    6. Farnoosh, Arash & Lantz, Frederic & Percebois, Jacques, 2014. "Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia," Energy, Elsevier, vol. 69(C), pages 299-308.
    7. Fahd Diab & Hai Lan & Lijun Zhang & Salwa Ali, 2015. "An Environmentally-Friendly Tourist Village in Egypt Based on a Hybrid Renewable Energy System––Part One: What Is the Optimum City?," Energies, MDPI, vol. 8(7), pages 1-19, July.
    8. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    9. Urban, Kristof L. & Scheller, Fabian & Bruckner, Thomas, 2021. "Suitability assessment of models in the industrial energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Chunqiong Miao & Kailiang Teng & Yaodong Wang & Long Jiang, 2020. "Technoeconomic Analysis on a Hybrid Power System for the UK Household Using Renewable Energy: A Case Study," Energies, MDPI, vol. 13(12), pages 1-19, June.
    11. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    14. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    15. Gupta, R.A. & Kumar, Rajesh & Bansal, Ajay Kumar, 2015. "BBO-based small autonomous hybrid power system optimization incorporating wind speed and solar radiation forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1366-1375.
    16. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    17. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    18. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    19. Paul Chibuogwu Ashinze & Jian Tian & Peter Chiedu Ashinze & Mehrab Nazir & Imrab Shaheen, 2021. "A Multidimensional Model of Sustainable Renewable Energy Linking Purchase Intentions, Attitude and User Behavior in Nigeria," Sustainability, MDPI, vol. 13(19), pages 1-16, September.
    20. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
    21. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    22. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    23. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    2. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    3. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    4. Muh, Erasmus & Tabet, Fouzi, 2019. "Comparative analysis of hybrid renewable energy systems for off-grid applications in Southern Cameroons," Renewable Energy, Elsevier, vol. 135(C), pages 41-54.
    5. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    6. Nfah, E.M. & Ngundam, J.M. & Vandenbergh, M. & Schmid, J., 2008. "Simulation of off-grid generation options for remote villages in Cameroon," Renewable Energy, Elsevier, vol. 33(5), pages 1064-1072.
    7. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    8. Al-Smairan, Mohammad, 2012. "Application of photovoltaic array for pumping water as an alternative to diesel engines in Jordan Badia, Tall Hassan station: Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4500-4507.
    9. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    10. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    11. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    12. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    13. Dufo-López, Rodolfo & Bernal-Agustín, José L., 2008. "Multi-objective design of PV–wind–diesel–hydrogen–battery systems," Renewable Energy, Elsevier, vol. 33(12), pages 2559-2572.
    14. Al-Sharafi, Abdullah & Sahin, Ahmet Z. & Ayar, Tahir & Yilbas, Bekir S., 2017. "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 33-49.
    15. Yamegueu, D. & Azoumah, Y. & Py, X. & Zongo, N., 2011. "Experimental study of electricity generation by Solar PV/diesel hybrid systems without battery storage for off-grid areas," Renewable Energy, Elsevier, vol. 36(6), pages 1780-1787.
    16. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    17. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    18. Saheb-Koussa, D. & Haddadi, M. & Belhamel, M., 2009. "Economic and technical study of a hybrid system (wind-photovoltaic-diesel) for rural electrification in Algeria," Applied Energy, Elsevier, vol. 86(7-8), pages 1024-1030, July.
    19. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    20. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:2:p:881-888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.