IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i6p1458-1465.html
   My bibliography  Save this article

Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study

Author

Listed:
  • Kahraman, Gökhan
  • Yücel, Halit Lütfi
  • Öztop, Hakan F.

Abstract

In this study, efficiency evaluation for Keban hydropower plant (KHPP), located in Elazig–Turkey, was performed both experimentally and numerically by using thermodynamic analysis. Turbine efficiency was measured with direct method by measuring temperature of turbine inlet and outlet. Theoretical analysis was performed using a computer code and employing the experimental data. A good agreement between the calculated and measured values was observed. The study shows that using thermodynamic method for determination of turbine efficiency is an effective and easy method in a hydraulic power plant.

Suggested Citation

  • Kahraman, Gökhan & Yücel, Halit Lütfi & Öztop, Hakan F., 2009. "Evaluation of energy efficiency using thermodynamics analysis in a hydropower plant: A case study," Renewable Energy, Elsevier, vol. 34(6), pages 1458-1465.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:6:p:1458-1465
    DOI: 10.1016/j.renene.2008.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108003893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yüksel, Ibrahim, 2008. "Hydropower in Turkey for a clean and sustainable energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1622-1640, August.
    2. Punys, Petras & Pelikan, Bernhard, 2007. "Review of small hydropower in the new Member States and Candidate Countries in the context of the enlarged European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1321-1360, September.
    3. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    4. Yuksek, Omer & Komurcu, Murat Ihsan & Yuksel, Ibrahim & Kaygusuz, Kamil, 2006. "The role of hydropower in meeting Turkey's electric energy demand," Energy Policy, Elsevier, vol. 34(17), pages 3093-3103, November.
    5. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    6. Balat, Havva, 2007. "A renewable perspective for sustainable energy development in Turkey: The case of small hydropower plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2152-2165, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erick O. Castañeda Magadán & Gustavo Urquiza Beltrán & Laura L. Castro Gómez & Juan C. García Castrejón, 2021. "Application of CFD to the Design of Manifolds Employed in the Thermodynamic Method to Obtain Efficiency in a Hydraulic Turbine," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    3. Arispe, Tania M. & de Oliveira, Waldir & Ramirez, Ramiro G., 2018. "Francis turbine draft tube parameterization and analysis of performance characteristics using CFD techniques," Renewable Energy, Elsevier, vol. 127(C), pages 114-124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dursun, Bahtiyar & Gokcol, Cihan, 2011. "The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey," Renewable Energy, Elsevier, vol. 36(4), pages 1227-1235.
    2. Okot, David Kilama, 2013. "Review of small hydropower technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 515-520.
    3. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    4. Uzlu, Ergun & Akpınar, Adem & Kömürcü, Murat İhsan, 2011. "Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin," Renewable Energy, Elsevier, vol. 36(2), pages 676-688.
    5. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    6. Benli, Hüseyin, 2013. "Potential of renewable energy in electrical energy production and sustainable energy development of Turkey: Performance and policies," Renewable Energy, Elsevier, vol. 50(C), pages 33-46.
    7. Abbasi, Tasneem & Abbasi, S.A., 2011. "Small hydro and the environmental implications of its extensive utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2134-2143, May.
    8. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    9. Gunnarsdottir, I. & Davidsdottir, B. & Worrell, E. & Sigurgeirsdottir, S., 2021. "Sustainable energy development: History of the concept and emerging themes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Arabatzis, Garyfallos & Myronidis, Dimitris, 2011. "Contribution of SHP Stations to the development of an area and their social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3909-3917.
    11. Yüksek, Ömer, 2008. "Reevaluation of Turkey's hydropower potential and electric energy demand," Energy Policy, Elsevier, vol. 36(9), pages 3374-3382, September.
    12. AkpInar, Adem & Kömürcü, Murat Ihsan & Kankal, Murat, 2011. "Development of hydropower energy in Turkey: The case of Çoruh river basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1201-1209, February.
    13. Yuksel, Ibrahim, 2013. "Renewable energy status of electricity generation and future prospect hydropower in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 1037-1043.
    14. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    15. Yüksel, Ibrahim, 2008. "Hydropower in Turkey for a clean and sustainable energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1622-1640, August.
    16. Marianna Rotilio & Chiara Marchionni & Pierluigi De Berardinis, 2017. "The Small-Scale Hydropower Plants in Sites of Environmental Value: An Italian Case Study," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    17. Ostojic, Gordana & Stankovski, Stevan & Ratkovic, Zeljko & Miladinovic, Ljubomir & Maksimovic, Rado, 2013. "Development of hydro potential in Republic Srpska," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 196-203.
    18. Xu, Jiuping & Ni, Ting, 2017. "Integrated technological paradigm-based soft paths towards sustainable development of small hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 623-634.
    19. Teegala Srinivasa Kishore & Epari Ritesh Patro & V. S. K. V. Harish & Ali Torabi Haghighi, 2021. "A Comprehensive Study on the Recent Progress and Trends in Development of Small Hydropower Projects," Energies, MDPI, vol. 14(10), pages 1-31, May.
    20. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:6:p:1458-1465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.